Alterations in the functions of astrocytes contribute to the appearance of a variety of neurological pathologies. Gliomas, especially those of astrocytic origin, are particularly resistant to chemotherapy and are often characterized by a poor prognosis. Neuroblastoma is the tumour with the higher incidence in infants. Anticancer drugs can induce apoptosis and their cytotoxic effect is often mediated by this process. We have previously demonstrated that the combination of deoxycoformycin, a strong adenosine deaminase inhibitor, and deoxyadenosine is toxic for a human astrocytoma cell line. In fact, after 15 h of treatment, this combination increases both mitochondrial reactive oxygen species and mitochondrial mass, induces apoptosis as indicated by cytochrome c release from mitochondria and activation of caspase-3. These events are preceded by reduction in lactate release in the medium. In this work we demonstrate that after 8 h of incubation with deoxyadenosine and deoxycoformycin, caspase-8 is activated, mitochondrial mass increases and mitochondrial reactive oxygen species decrease. The addition of baicalein to the incubation medium reduces cell death and caspase-3 activity induced by deoxycoformycin and deoxyadenosine in combination. This protective effect is correlated to an increase of lactate released in the medium, a decrease in the intracellular levels of dATP, and an increase in ATP levels, as compared with the cells subjected to the treatment with deoxycoformycin and deoxyadenosine without any further addition. The effect of baicalein appears to be related to an inhibition of deoxyadenosine phosphorylation, rather than or in addition to the well known antioxidant activity of the compound. This work indicates that an astrocytoma cell line, reported to be resistant to mitochondria-dependent pathways of apoptosis, is indeed very sensitive to a manipulation affecting the balance of cellular purine metabolite concentrations. The same treatment is also cytotoxic on a neuroblastoma cell line, thus suggesting long term implications for cancer therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuint.2014.11.005 | DOI Listing |
Nat Commun
January 2025
The Intellectual and Developmental Disabilities Research Center, The Semel Institute for Neuroscience and Human Behavior, and The Broad Stem Cell Research Center, The Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
Extensive neovascularization is a hallmark of glioblastoma (GBM). In addition to supplying oxygen and nutrients, vascular endothelial cells provide trophic support to GBM cells via paracrine signaling. Here we report that Endocan (ESM1), an endothelial-secreted proteoglycan, confers enhanced proliferative, migratory, and angiogenic properties to GBM cells and regulates their spatial identity.
View Article and Find Full Text PDFJ Transl Med
January 2025
Informatics Core, Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, USA.
Background: Glioblastoma (GBM) is a rare brain cancer with an exceptionally high mortality rate, which illustrates the pressing demand for more effective therapeutic options. Despite considerable research efforts on GBM, its underlying biological mechanisms remain unclear. Furthermore, none of the United States Food and Drug Administration (FDA) approved drugs used for GBM deliver satisfactory survival improvement.
View Article and Find Full Text PDFThis study evaluates the oncolytic potential of the Moscow strain of reovirus against human metastatic melanoma and glioblastoma cells. The Moscow strain effectively infects and replicates within human melanoma cell lines and primary glioblastoma cells, while sparing non-malignant human cells. Infection leads to the selective destruction of neoplastic cells, mediated by functional viral replication.
View Article and Find Full Text PDFMolecules
December 2024
IRCCS Istituto Neurologico Mediterraneo NEUROMED, Via Atinense 18, 86077 Pozzilli, Italy.
Glioblastoma (GBM) is the most common and aggressive form of brain cancer in adults, characterized by extensive growth, a high recurrence rate, and resistance to treatment. Growing research interest is focusing on the biological roles of natural compounds due to their potential beneficial effects on health. Our research aimed to investigate the effects of lavender essential oil (LEO) on a GBM cell model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!