The secreted Frizzled-Related Protein 2 modulates cell fate and the Wnt pathway in the murine intestinal epithelium.

Exp Cell Res

Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Université Claude Bernard Lyon 1, France. Electronic address:

Published: January 2015

AI Article Synopsis

  • sFRPs, particularly sFRP2, have a complex role in intestinal epithelium homeostasis, acting not only as antagonists but also as activators of the Wnt signaling pathway, particularly under the influence of thyroid hormone.
  • In wild type animals, sFRP2 is specifically expressed in intestinal crypts, and deletion of sFRP2 (sFRP2(-/-) mice) leads to increased cell death, impaired cell migration, and altered differentiation of intestinal cells.
  • The absence of sFRP2 was shown to reduce Wnt activity, highlighting its vital role in regulating apoptosis, cell fate decisions, and overall Wnt signaling in intestinal epithelial progenitors.

Article Abstract

The secreted Frizzled-Related Proteins (sFRPs) are generally considered antagonistic to Wnt signaling. However, several studies have described their synergy and/or activation of this pathway. Our own data indicated that in the intestinal epithelium, thyroid hormone induced-expression of sFRP2 stabilizes β-catenin, leading to induction of Wnt. The aim of this work was to investigate the role of sFRP2 in the intestinal epithelium homeostasis and its specific effect on canonical Wnt pathway. In wild type animals we observed a restricted pattern of sFRP2 protein expression at the level of the intestinal crypts. Interestingly, sFRP2(-/-) mice displayed increased apoptosis within the crypts together with a defect in cell migration. Because of altered proportion of lineage-specific committed progenitors, the sFRP2(-/-) animals also showed a decrease of absorptive differentiation counterbalanced by an increase of secretory differentiation. Regarding the action of sFRP2 on canonical Wnt pathway, the lack of sFRP2 expression in sFRP2(-/-)/TopGal animals in vivo reduced the Wnt activity. This positive action of sFRP2 on Wnt was further confirmed by in vitro studies. In conclusion, in accordance with its restricted expression profile, sFRP2 contributes to the physiology of the intestinal epithelial crypt progenitors by controlling apoptosis, cell fate decisions and the Wnt pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yexcr.2014.10.014DOI Listing

Publication Analysis

Top Keywords

wnt pathway
16
intestinal epithelium
12
secreted frizzled-related
8
cell fate
8
wnt
8
canonical wnt
8
action sfrp2
8
sfrp2
7
pathway
5
intestinal
5

Similar Publications

DKK1 and Its Receptors in Esophageal Adenocarcinoma: A Promising Molecular Target.

Diagnostics (Basel)

January 2025

First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, 11527 Athens, Greece.

Esophageal adenocarcinoma (EAC) is an aggressive gastrointestinal (GI) malignancy with increasing incidence. Despite the recent progress in targeted therapies and surgical approaches, the survival rates of esophageal adenocarcinoma patients remain poor. The Dickkopf (DKK) proteins are secretory proteins known mainly as antagonists of the Wnt/β-catenin signaling pathway, which is considered an oncogene.

View Article and Find Full Text PDF

Cutaneous melanoma is a highly invasive, heterogeneous and treatment resistant cancer. It's ability to dynamically shift between transcriptional states or phenotypes results in an adaptive cell plasticity that may drive cancer cell invasion or the development of therapy resistance. The expression of peroxidasin (PXDN), an extracellular matrix peroxidase, has been proposed to be associated with the invasive metastatic melanoma phenotype.

View Article and Find Full Text PDF

Pseudorabies virus (PRV) is one of the highly contagious pathogens causing significant economic losses to the swine industry worldwide. More importantly, PRV is becoming a potential "life-threatening zoonosis" since the human-originated PRV strain was first isolated in 2019. Previously we found that the canonical Wnt/β-catenin pathway facilitates PRV proliferation, while the underlying mechanism remains unknown.

View Article and Find Full Text PDF

In neurons, the acquisition of a polarized morphology is achieved upon the outgrowth of a single axon from one of several neurites. Small extracellular vesicles (sEVs), such as exosomes, from diverse sources are known to promote neurite outgrowth and thus may have therapeutic potential. However, the effect of fibroblast-derived exosomes on axon elongation in neurons of the central nervous system under growth-permissive conditions remains unclear.

View Article and Find Full Text PDF

Retinal pigment epithelial (RPE) cells undergoing epithelial‑mesenchymal transition (EMT) are a key factor in promoting the progression of subretinal fibrosis. The klotho protein and gene exert anti‑fibrotic effects in multiple fibrotic diseases. However, the mechanisms involved in the role of klotho are unclear in subretinal fibrosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!