Differential regulation of hepatopancreatic vitellogenin (VTG) gene expression by two putative molt-inhibiting hormones (MIH1/2) in Pacific white shrimp (Litopenaeus vannamei).

Peptides

CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China. Electronic address:

Published: June 2015

Molt-inhibiting hormone (MIH), a peptide member of the crustacean hyperglycemic hormone (CHH) family, is commonly considered as a negative regulator during the molt cycle in crustaceans. Phylogenetic analysis of CHH family peptides in penaeidae shrimps suggested that there is no significant differentiation between MIH and vitellogenesis-inhibiting hormone (VIH, another peptide member of CHH family), by far the most potent negative regulator of crustacean vitellogenesis known. Thus, MIH may also play a role in regulating vitellogenesis. In this study, two previously reported putative MIHs (LivMIH1 and LivMIH2) in the Pacific white shrimp (Litopenaeus vannamei) were expressed in Escherichia coli, purified by immobilized metal ion affinity chromatography (IMAC) and further confirmed by western blot. Regulation of vitellogenin (VTG) mRNA expression by recombinant LivMIH1 and LivMIH2 challenge was performed by both in vitro hepatopancreatic primary cells culture and in vivo injection approaches. In in vitro primary culture of shrimp hepatopancreatic cells, only LivMIH2 but not LivMIH1 administration could improve the mRNA expression of VTG. In in vivo injection experiments, similarly, only LivMIH2 but not LivMIH1 could stimulate hepatopancreatic VTG gene expression and induce ovary maturation. Our study may provide evidence for one isoform of MIH (MIH2 in L. vannamei) may serve as one of the mediators of the physiological progress of molting and vitellogenesis. Our study may also give new insight in CHH family peptides regulating reproduction in crustaceans, in particular penaeidae shrimps.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.peptides.2014.11.002DOI Listing

Publication Analysis

Top Keywords

chh family
16
vitellogenin vtg
8
vtg gene
8
gene expression
8
pacific white
8
white shrimp
8
shrimp litopenaeus
8
litopenaeus vannamei
8
peptide member
8
negative regulator
8

Similar Publications

Neuropeptides are pivotal in regulating a broad spectrum of developmental, physiological, and behavioral processes throughout the life cycle of crustaceans. In this comprehensive study, we utilized a multiomics approach to characterize neuropeptide precursors and to assess the expression profiles of neuropeptide-encoding genes across various tissues and developmental stages in the Pacific white shrimp, . Additionally, we explored the differential expression of neuropeptide genes in the eyestalk before and after the RNA interference-mediated suppression of crustacean hyperglycemic hormone (CHH) and vitellogenesis-inhibiting hormone (VIH) gene expression.

View Article and Find Full Text PDF

Background: Flowers are important plant organs, and their development is correlated with yield in woody fruit trees. For cultivar 'Sucui 1', the research on how DNA methylation accurately regulates the expression of TFs and affects the specific regulatory mechanism of flower bud wizening will help reduce wizened buds.

Methods: Here, the DNA methylomes and transcriptomes of two types of flower buds from the cultivar 'Sucui 1' were compared.

View Article and Find Full Text PDF

Fgf17: A regulator of the mid/hind brain boundary in mammals.

Differentiation

December 2024

School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits, 2050, Johannesburg, South Africa. Electronic address:

The Fibroblast growth factor (FGFs) family consists of at least 22 members that exert their function by binding and activating fibroblast growth factor receptors (FGFRs). The Fgf8/FgfD subfamily member, Fgf17, is located on human chromosome 8p21.3 and mouse chromosome 14 D2.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates the genetic causes of congenital hypogonadotropic hypogonadism (CHH), a rare disorder linked to deficiencies in gonadotropin-releasing hormone (GnRH), in six families from Pakistan.
  • - Researchers used genome sequencing to identify pathogenic single nucleotide variants and copy number variants, discovering novel mutations in known CHH-related genes such as GNRHR and KISS1R in four families, while two others had significant deletions in the ANOS1 gene.
  • - The findings highlight the importance of using a comprehensive analysis of genetic variants to enhance diagnostic accuracy for CHH patients.
View Article and Find Full Text PDF

In this study, the complex organization of the AnG in the giant freshwater prawn Macrobrachium rosenbergii was revealed using various techniques, including conventional histology, histochemistry, scanning electron microscopy, and X-ray tomography. The results showed the diversity of cells in the AnG and the detailed organization of the labyrinth's tubule into four radiated areas from the central to peripheral zones. The study also demonstrated the expression of some vertebrate kidney-associated homolog genes, aquaporin (AQP), solute carrier family 22 (SLC-22), nephrin, and uromodulin, in the AnG by qPCR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!