The aim of this study was to develop, optimize and evaluate the potential of solid lipid nanoparticles (SLNs) as a topical delivery system for targeted and prolonged release of Fluocinolone acetonide (FA). FA loaded SLNs were successfully developed by an emulsification-ultrasonication method and optimized using 17-run, 3-factor, 3-level Box-Behnken design of Design Expert software. SLNs were evaluated for particle size, polydispersity index, zeta potential, drug encapsulation efficiency and drug loading. Shape and surface morphology of the SLNs confirmed spherical shape of nanoparticles when investigated under a transmission electron microscope. Complete encapsulation of drug in the nanoparticles was confirmed by powder X-ray diffraction and differential scanning calorimetry. The drug release study confirmed prolonged release from the SLNs following Higuchi release kinetics with R(2) value of 0.995 where as pure drug suspension exhibited faster drug release following zero order release kinetics with R(2) value of 0.992. Stability study confirmed that SLNs were stable for 3 months at 4 °C. Furthermore, in vitro skin distribution studies showed presence of significant amount of FA on the epidermal layer of skin when treated with FA loaded SLNs suspension while plain FA suspension showed minimum amount of FA in the epidermis and dermis. Moreover, selective accumulation of FA in the epidermis might eliminate adverse side effects associated with systemic exposure. Results demonstrated that FA loaded SLNs could be a promising modality for psoriasis treatment but to establish clinical utility of the present system further studies are required in clinically relevant models.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemphyslip.2014.11.004DOI Listing

Publication Analysis

Top Keywords

loaded slns
12
delivery system
8
slns
8
prolonged release
8
drug release
8
study confirmed
8
release kinetics
8
release
6
drug
6
development characterization
4

Similar Publications

Micelles, liposomes, and solid lipid nanoparticles (SLNs) are promising drug delivery vehicles; however, poor aqueous stability requires post-processing drying methods for maintaining long-term stability. The objective of this study was to compare the potential of lipid-based micelles, liposomes, and SLNs for producing stable re-dispersible spray-dried powders with trehalose or a combination of trehalose and L-leucine. This study provides novel insights into the implementation of spray drying as a technique to enhance long-term stability for these lipid-based nanocarriers.

View Article and Find Full Text PDF

Curcumin-Loaded Lipid Nanoparticles: A Promising Antimicrobial Strategy Against in Endodontic Infections.

Pharmaceutics

January 2025

Laboratório Associado para a Química Verde-Rede de Química e Tecnologia (LAQV, REQUIMTE), Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.

This study aims to evaluate the efficacy of curcumin (CUR), a natural polyphenol with potent antimicrobial and anti-inflammatory properties, when formulated as solid lipid nanoparticles (CUR-loaded SLN) against . Solid lipid nanoparticles (SLNs) were prepared as a carrier for CUR, which significantly improved its solubility. SLNs made with cetyl palmitate and Tween 80 were obtained via the hot ultrasonication method.

View Article and Find Full Text PDF

This study explores the development and characterization of lyophilized chondroitin sulfate (CHON)-loaded solid lipid nanoparticles (SLN) as an innovative platform for advanced drug delivery. Solid lipid nanoparticles are increasingly recognized for their biocompatibility, their ability to encapsulate diverse compounds, their capacity to enhance drug stability, their bioavailability, and their therapeutic efficacy. CHON, a naturally occurring glycosaminoglycan with anti-inflammatory and regenerative properties, was integrated into SLN formulations using the hot microemulsion technique.

View Article and Find Full Text PDF

Spironolactone (SP), an aldosterone inhibitor widely used to treat androgen-dependent disorders such as acne, hirsutism, and alopecia, has demonstrated therapeutic potential in both oral and topical formulations. However, SP's low solubility and poor bioavailability in conventional formulations have driven the development of novel nanocarriers to enhance its efficacy. This review systematically examines recent advancements in SP-loaded nanocarriers, including lipid nanoparticles (LNPs), vesicular nanoparticles (VNPs), polymeric nanoparticles (PNPs), and nanofibers (NFs).

View Article and Find Full Text PDF

Skin ageing, driven predominantly by oxidative stress from reactive oxygen species (ROS) induced by environmental factors like ultraviolet A (UVA) radiation, accounts for approximately 80% of extrinsic skin damage. L-glutathione (GSH), a potent antioxidant, holds promise in combating UVA-induced oxidative stress. However, its instability and limited penetration through the stratum corneum hinder its topical application.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!