18FDG-microPET and MR DTI findings in Tor1a+/- heterozygous knock-out mice.

Neurobiol Dis

Center for Neurosciences, The Feinstein Institute for Medical Research, NY 11030, USA; Department of Molecular Medicine, Hofstra University, NY 11549, USA; Department of Radiology, Albert Einstein College of Medicine, NY 10461, USA; Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey. Electronic address:

Published: January 2015

TorsinA is an important protein in brain development, and plays a role in the regulation of neurite outgrowth and synaptic function. Patients with the most common form of genetic dystonia carry a mutation (DYT1) in one copy of the Tor1a gene, a 3-bp deletion, causing removal of a single glutamic acid from torsinA. Previous imaging studies have shown that abnormal cerebellar metabolism and damaged cerebello-thalamo-cortical pathway contribute to the pathophysiology of DYT1 dystonia. However, how a mutation in one copy of the Tor1a gene causes these abnormalities is not known. We studied Tor1a heterozygous knock-out mice in vivo with FDG-PET and ex vivo with diffusion tensor imaging. We found metabolic abnormalities in cerebellum, caudate-putamen, globus pallidus, sensorimotor cortex and subthalamic nucleus. We also found that FA was increased in caudate-putamen, sensorimotor cortex and brainstem. We compared our findings with a previous imaging study of the Tor1a knock-in mice. Our study suggested that having only one normal copy of Tor1a gene may be responsible for the metabolic abnormalities observed; having a copy of mutant Tor1a, on the other hand, may be responsible for white matter pathway damages seen in DYT1 dystonia subjects.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nbd.2014.10.020DOI Listing

Publication Analysis

Top Keywords

copy tor1a
12
tor1a gene
12
heterozygous knock-out
8
knock-out mice
8
previous imaging
8
dyt1 dystonia
8
metabolic abnormalities
8
sensorimotor cortex
8
tor1a
6
18fdg-micropet dti
4

Similar Publications

Phenotypes of some rare genetic diseases are atypical and it is a challenge for pediatric intensive care units (PICUs) to diagnose and manage such patients in an emergency. In this study, we investigated 58 PICU patients (39 deceased and 19 surviving) in critical ill status or died shortly without a clear etiology. Whole exome sequencing was performed of 103 DNA samples from their families.

View Article and Find Full Text PDF

18FDG-microPET and MR DTI findings in Tor1a+/- heterozygous knock-out mice.

Neurobiol Dis

January 2015

Center for Neurosciences, The Feinstein Institute for Medical Research, NY 11030, USA; Department of Molecular Medicine, Hofstra University, NY 11549, USA; Department of Radiology, Albert Einstein College of Medicine, NY 10461, USA; Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey. Electronic address:

TorsinA is an important protein in brain development, and plays a role in the regulation of neurite outgrowth and synaptic function. Patients with the most common form of genetic dystonia carry a mutation (DYT1) in one copy of the Tor1a gene, a 3-bp deletion, causing removal of a single glutamic acid from torsinA. Previous imaging studies have shown that abnormal cerebellar metabolism and damaged cerebello-thalamo-cortical pathway contribute to the pathophysiology of DYT1 dystonia.

View Article and Find Full Text PDF

Myoclonus dystonia syndrome is a childhood onset hyperkinetic movement disorder characterized by predominant alcohol responsive upper body myoclonus and dystonia. A proportion of cases are due to mutations in the maternally imprinted SGCE gene. Previous studies have suggested that patients with SGCE mutations may have an increased rate of psychiatric disorders.

View Article and Find Full Text PDF

The primary dystonias are a genetically heterogeneous group of disorders that can be subdivided in pure dystonias, dystonia-plus syndromes, and paroxymal dystonia. Four pure autosomal dominant dystonia loci have been mapped to date, DYT1, 6, 7, and 13, with varying penetrance. We report the mapping of a novel locus for a late-onset form of pure torsion dystonia in a family from northern Sweden.

View Article and Find Full Text PDF

Myoclonus-dystonia: clinical and genetic evaluation of a large cohort.

J Neurol Neurosurg Psychiatry

June 2009

Department of Neurology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands.

Background: Myoclonus-dystonia (M-D) is an autosomal dominant inherited movement disorder. Various mutations within the epsilon-sarcoglycan (SGCE) gene have been associated with M-D, but mutations are detected in only about 30% of patients. The lack of stringent clinical inclusion criteria and limitations of mutation screens by direct sequencing might explain this observation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!