Objective: Increases in childhood obesity correspond with shifts in children's snacking behaviors and food portion sizes. This study examined parents' conceptualizations of portion size and the strategies they use to portion snacks in the context of preschool-aged children's snacking.

Methods: Semi-structured qualitative interviews were conducted with non-Hispanic white (W), African American (AA), and Hispanic (H) low-income parents (n = 60) of preschool-aged children living in Philadelphia and Boston. The interview examined parents' child snacking definitions, purposes, contexts, and frequency. Verbatim transcripts were analyzed using a grounded theory approach. Coding matrices compared responses by race/ethnicity, parent education, and household food security status.

Results: Parents' commonly referenced portion sizes when describing children's snacks with phrases like "something small." Snack portion sizes were guided by considerations including healthfulness, location, hunger, and timing. Six strategies for portioning snacks were presented including use of small containers, subdividing large portions, buying prepackaged snacks, use of hand measurement, measuring cups, scales, and letting children determine portion size. Differences in considerations and strategies were seen between race/ethnic groups and by household food security status.

Conclusions: Low-income parents of preschool-aged children described a diverse set of considerations and strategies related to portion sizes of snack foods offered to their children. Future studies should examine how these considerations and strategies influence child dietary quality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4355164PMC
http://dx.doi.org/10.1016/j.appet.2014.11.005DOI Listing

Publication Analysis

Top Keywords

portion sizes
16
portion size
12
considerations strategies
12
portion
8
size strategies
8
children's snacks
8
examined parents'
8
strategies portion
8
low-income parents
8
parents preschool-aged
8

Similar Publications

Anomalous Node Detection in Blockchain Networks Based on Graph Neural Networks.

Sensors (Basel)

December 2024

School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, China.

With the rapid development of blockchain technology, fraudulent activities have significantly increased, posing a major threat to the personal assets of blockchain users. The blockchain transaction network formed during user transactions can be represented as a graph consisting of nodes and edges, making it suitable for a graph data structure. Fraudulent nodes in the transaction network are referred to as anomalous nodes.

View Article and Find Full Text PDF

Objectives: This study aimed to analyze the associations between dietary polyamine intake and incident T2DM.

Methods: This prospective analysis included 168,137 participants from the UK Biobank who did not have T2DM at baseline. Dietary polyamines were calculated based on portion sizes of food items and a nutrient database.

View Article and Find Full Text PDF

Food waste (FW) threatens food security, environmental sustainability, and economic efficiency, with about one-third of global food production lost or wasted. Schools play a crucial role in addressing FW, representing lost resources and missed educational opportunities. The present research assessed three interventions to reduce plate waste (PW) in Rezekne City schools, namely (S1) a plate waste tracker, (S2) an awareness and educational campaign, and (S3) organizational changes, including larger plates, extended lunch breaks, and teacher supervision.

View Article and Find Full Text PDF

Thermally Induced Phenomena in Amorphous Nifedipine: The Correlation Between the Structural Relaxation and Crystal Growth Kinetics.

Molecules

January 2025

Department of Physical Chemistry, Faculty of Chemical Technology, University of Pardubice, nam. Cs Legii 565, 532 10 Pardubice, Czech Republic.

The particle size-dependent processes of structural relaxation and crystal growth in amorphous nifedipine were studied by means of non-isothermal differential scanning calorimetry (DSC) and Raman microscopy. The enthalpy relaxation was described in terms of the Tool-Narayanaswamy-Moynihan model, with the relaxation motions exhibiting the activation energy of 279 kJ·mol for the temperature shift, but with a significantly higher value of ~500 kJ·mol being obtained for the rapid transition from the glassy to the undercooled liquid state (the latter is in agreement with the activation energy of the viscous flow). This may suggest different types of relaxation kinetics manifesting during slow and rapid heating, with only a certain portion of the relaxation motions occurring that are dependent on the parameters of a given temperature range and time frame.

View Article and Find Full Text PDF

The molecular chains of recycled polyethylene terephthalate (rPET) show breakage during daily use, causing poor crystallization and leading to mechanical properties that, when blended with the nucleating agent, become an effective method of solving this problem. The salt-nucleating agent sodium benzoate (SB), disodium terephthalate (DT), and trisodium 1,3,5benzene tricarboxylic (TBT) were synthesized, and an rPET/nucleating agent blend was prepared. The intrinsic viscosity () results showed that the of the rPET/SB was decreased, which indicated the breakage of the rPET molecular chains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!