Novel curcumin analog C66 prevents diabetic nephropathy via JNK pathway with the involvement of p300/CBP-mediated histone acetylation.

Biochim Biophys Acta

Kosair Children's Hospital Research Institute and Department of Pediatrics of University of Louisville, Louisville, KY, USA; Department of Radiation Oncology, University of Louisville, Louisville, KY, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA. Electronic address:

Published: January 2015

Glomerulosclerosis and interstitial fibrosis represent the key events in development of diabetic nephropathy (DN), with connective tissue growth factor (CTGF), plasminogen activator inhibitor-1 (PAI-1) and fibronectin 1 (FN-1) playing important roles in these pathogenic processes. To investigate whether the plant metabolite curcumin, which exerts epigenetic modulatory properties when applied as a pharmacological agent, may prevent DN via inhibition of the JNK pathway and epigenetic histone acetylation, diabetic and age-matched non-diabetic control mice were administered a 3-month course of curcumin analogue (C66), c-Jun N-terminal kinase inhibitor (JNKi, sp600125), or vehicle alone. At treatment end, half of the mice were sacrificed for analysis and the other half were maintained without treatment for an additional 3 months. Renal JNK phosphorylation was found to be significantly increased in the vehicle-treated diabetic mice, but not the C66- and JNKi-treated diabetic mice, at both the 3-month and 6-month time points. C66 and JNKi treatment also significantly prevented diabetes-induced renal fibrosis and dysfunction. Diabetes-related increases in histone acetylation, histone acetyl transferases' (HATs) activity, and the p300/CBP HAT expression were also significantly attenuated by C66 or JNKi treatment. Chromatin immunoprecipitation assays showed that C66 and JNKi treatments decreased H3-lysine9/14-acetylation (H3K9/14Ac) level and p300/CBP occupancy at the CTGF, PAI-1 and FN-1 gene promoters. Thus, C66 may significantly and persistently prevent renal injury and dysfunction in diabetic mice via down-regulation of diabetes-related JNK activation and consequent suppression of the diabetes-related increases in HAT activity, p300/CBP expression, and histone acetylation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4369325PMC
http://dx.doi.org/10.1016/j.bbadis.2014.11.006DOI Listing

Publication Analysis

Top Keywords

histone acetylation
16
diabetic mice
12
c66 jnki
12
diabetic nephropathy
8
jnk pathway
8
jnki treatment
8
diabetes-related increases
8
activity p300/cbp
8
c66
6
diabetic
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!