The object recognition task (ORT) is widely used to measure object memory processes in rodents. Recently, the memory process known as pattern separation has received increasing attention, as impaired pattern separation can be one of the cognitive symptoms of multiple neurological and psychiatric disorders. Pattern separation is the formation of distinct representations out of similar inputs. In the search for an easily implemented task for rodents that can be used to measure pattern separation, we developed a task derived from the ORT and the object location task (OLT), which we called the object pattern separation (OPS) task. This task aims to measure spatial pattern separation per se, which utilizes memory processes centered in the DG and CA3 region of the hippocampus. Adult male C57BL/6 mice and adult male Wistar rats were used to validate different object locations which can be used to measure spatial pattern separation. Furthermore, different inter-trial time intervals were tested with the most optimal object location, to further evaluate pattern separation-related memory in mice. We found that specific object locations show gradual effects, which is indicative of pattern separation, and that the OPS task allows the detection of spatial pattern separation bi-directionally at intermediate spatial separations. Thus, object locations and time intervals can be specifically adjusted as needed, in order to investigate an expected improvement or impairment. We conclude that the current spatial OPS task can be best described as a specific version of the ORT, which can be used to investigate pattern separation processes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbr.2014.10.041DOI Listing

Publication Analysis

Top Keywords

pattern separation
44
ops task
16
separation ops
12
spatial pattern
12
object locations
12
separation
11
pattern
11
object
10
task
10
object pattern
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!