We introduce an evolutionary metacommunity of multitrophic food webs on several habitats coupled by migration. In contrast to previous studies that focus either on evolutionary or on spatial aspects, we include both and investigate the interplay between them. Locally, the species emerge, interact and go extinct according to the rules of the well-known evolutionary food web model proposed by Loeuille and Loreau (2005). Additionally, species are able to migrate between the habitats. With random migration, we are able to reproduce common trends in diversity-dispersal relationships: Regional diversity decreases with increasing migration rates, whereas local diversity can increase in case of a low level of dispersal. Moreover, we find that the total biomasses in the different patches become similar even when species composition remains different. With adaptive migration, we observe species compositions that differ considerably between patches and contain species that are descendant from ancestors on both patches. This result indicates that the combination of spatial aspects and evolutionary processes affects the structure of food webs in different ways than each of them alone.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtbi.2014.11.006 | DOI Listing |
Gut Microbes
December 2025
Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA.
The therapeutic benefits of opioids are compromised by the development of analgesic tolerance, which necessitates higher dosing for pain management thereby increasing the liability for drug dependence and addiction. Rodent models indicate opposing roles of the gut microbiota in tolerance: morphine-induced gut dysbiosis exacerbates tolerance, whereas probiotics ameliorate tolerance. Not all individuals develop tolerance, which could be influenced by differences in microbiota, and yet no study design has capitalized upon this natural variation.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang 050000, China.
SKP1 constitutes the Skp1-Cullin-F-box ubiquitin E3 ligase (SCF), which plays a role in plant growth and development and biotic and abiotic stress in ubiquitination. However, the response of the gene family to abiotic and biotic stresses in cotton has not been well characterized. In this study, a total of 72 genes with the conserved domain of SKP1 were identified in four Gossypium species.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China.
The heat shock protein 70 (HSP70) family plays an important role in the growth and development of lettuce and in the defense response to high-temperature stress; however, its bioinformatics analysis in lettuce has been extremely limited. Genome-wide bioinformatics analysis methods such as chromosome location, phylogenetic relationships, gene structure, collinearity analysis, and promoter analysis were performed in the gene family, and the expression patterns in response to high-temperature stress were analyzed. The mechanism of in heat resistance in lettuce was studied by virus-induced gene silencing (VIGS) and transient overexpression techniques.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
Codon usage bias (CUB) refers to the different frequencies with which various codons are utilized within a genome. Examining CUB is essential for understanding genome structure, function, and evolution. However, little was known about codon usage patterns and the factors influencing the nuclear genomes of eight ecologically significant Sapindaceae species widely utilized for food and medicine.
View Article and Find Full Text PDFmSystems
January 2025
Zoological Institute, Kiel University, Kiel, Germany.
The microbiomes of host organisms and their direct source environments are closely linked and key for shaping microbial community dynamics. The relationship between these linked dynamics is largely unexplored because source substrates are usually unavailable. To address this current knowledge gap, we employed bacteriovorous nematodes as a unique model system, for which source substrates like rotting apples can be easily collected.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!