Unlabelled: Infantile movement disorders are rare and genetically heterogeneous. We set out to identify the disease-causing mutation in siblings with a novel recessive neurodegenerative movement disorder. Genetic linkage analysis and whole-exome sequencing were performed in the original family. A cohort of six unrelated patients were sequenced for further mutations in the identified candidate gene. Pathogenicity of the mutation was evaluated by in silico analyses and by structural modeling. We identified the first and homozygous mutation (p.Gly114Ala) in the Mediator subunit 20 gene (MED20) in siblings presenting with infantile-onset spasticity and childhood-onset dystonia, progressive basal ganglia degeneration, and brain atrophy. Mediator refers to an evolutionarily conserved multi-subunit RNA polymerase II co-regulatory complex. Pathogenicity of the identified missense mutation is suggested by in silico analyses, by structural modeling, and by previous reporting of mutations in four distinct Mediator subunits causing neurodegenerative phenotypes. No further MED20 mutations were detected in this study.
Conclusion: We delineate a novel infantile-onset neurodegenerative movement disorder and emphasize the Mediator complex as critical for normal neuronal function. Definitive proof of pathogenicity of the identified MED20 mutation will require confirmation in unrelated patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00431-014-2463-7 | DOI Listing |
Life Sci
September 2023
Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Italy; Clinical Department of Internal Medicine and Specialistic Units, Division of Clinical Immunology and Immunohematology, Transfusion Medicine, and Transplant Immunology (SIMT), Regional Reference Laboratory of Transplant Immunology (LIT), Azienda Universitaria Policlinico (AOU), Italy.
Neurological diseases, including traumatic brain injuries, stroke (haemorrhagic and ischemic), and inherent neurodegenerative diseases cause acquired disability in humans, representing a leading cause of death worldwide. The Mediator complex (MED) is a large, evolutionarily conserved multiprotein that facilities the interaction between transcription factors and RNA Polymerase II in eukaryotes. Some MED subunits have been found altered in the brain, although their specific functions in neurodegenerative diseases are not fully understood.
View Article and Find Full Text PDFRNA Biol
October 2017
a Department of Molecular Biology , Umeå University, Umeå , Sweden.
The heterotrimeric pre-mRNA retention and splicing (RES) complex, consisting of Bud13p, Snu17p and Pml1p, promotes splicing and nuclear retention of a subset of intron-containing pre-mRNAs. Yeast cells deleted for individual RES genes show growth defects that are exacerbated at elevated temperatures. Although the growth phenotypes correlate to the splicing defects in the individual mutants, the underlying mechanism is unknown.
View Article and Find Full Text PDFEur J Pediatr
January 2015
Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Wien, Austria,
Unlabelled: Infantile movement disorders are rare and genetically heterogeneous. We set out to identify the disease-causing mutation in siblings with a novel recessive neurodegenerative movement disorder. Genetic linkage analysis and whole-exome sequencing were performed in the original family.
View Article and Find Full Text PDFNucleic Acids Res
December 2013
Department of Biochemistry and Molecular Biology, Colorado State University, CO 80523, USA.
The successful synthesis of a transcript by RNA polymerase II (RNAPII) is a multistage process with distinct rate-limiting steps that can vary depending on the particular gene. A growing number of genes in a variety of organisms are regulated at steps after the recruitment of RNAPII. The best-characterized Saccharomyces cerevisiae gene regulated in this manner is CYC1.
View Article and Find Full Text PDFEpigenetics Chromatin
November 2012
Department of Biology, University of Copenhagen, BioCenter, Ole Maaløes vej 5, 2200, Copenhagen, N, Denmark.
Background: In fission yeast, centromeric heterochromatin is necessary for the fidelity of chromosome segregation. Propagation of heterochromatin in dividing cells requires RNA interference (RNAi) and transcription of centromeric repeats by RNA polymerase II during the S phase of the cell cycle.
Results: We found that the Med8-Med18-Med20 submodule of the Mediator complex is required for the transcriptional regulation of native centromeric dh and dg repeats and for the silencing of reporter genes inserted in centromeric heterochromatin.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!