Improvement of insulin signaling in myoblast cells by an addition of SKIP-binding peptide within Pak1 kinase domain.

Biochem Biophys Res Commun

The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki, Kobe 650-0017, Japan. Electronic address:

Published: January 2015

Abnormalities in insulin-induced glucose incorporation in skeletal muscle were observed in Type 2 diabetes. Our previous studies revealed that the binding between skeletal muscle and kidney-enriched inositol polyphosphate phosphatase (SKIP) and p21-activated protein kinase (Pak1) at the plasma membrane is induced insulin-dependently and that this binding mediated a rapid and efficient termination of insulin signaling and a subsequent glucose uptake into skeletal muscle cells. Here, we identified 11-amino-acids peptide within kinase domain of Pak1, necessary and sufficient for SKIP binding. Expression of this region in C2C12 cells resulted in an increase in insulin signaling. Supplementation of a synthetic peptide of this sequence increased insulin signaling and insulin-induced glucose uptake into skeletal muscle cell lines. These findings suggest the physiological role of Pak1-SKIP binding in the regulation of insulin signaling in skeletal muscle.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2014.11.031DOI Listing

Publication Analysis

Top Keywords

insulin signaling
20
skeletal muscle
20
kinase domain
8
insulin-induced glucose
8
glucose uptake
8
uptake skeletal
8
signaling
5
skeletal
5
muscle
5
improvement insulin
4

Similar Publications

Activation of the De Novo Serine Synthesis Pathway and Disruption of Insulin Signaling Induced by Supplemental SeMet in Vitro.

Biol Trace Elem Res

January 2025

Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China.

Selenium (Se) intake or selenoprotein overexpression can cause abnormal glucose metabolism and increase the risk of type 2 diabetes (T2D). The purpose of this study is to observe whether glycolysis bypass in the de novo serine synthesis pathway (SSP) is activated under high-Se stress in vitro. Initially, HCT-116, L02, HepG2, and differentiated C2C12 cells were exposed to five selenomethionine (SeMet) concentrations (0.

View Article and Find Full Text PDF

Exercise promotes peripheral glycolysis in skeletal muscle through miR-204 induction via the HIF-1α pathway.

Sci Rep

January 2025

Laboratory of Biochemistry, College of Veterinary Medicine, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon, 34134, Korea.

The mechanisms underlying exercise-induced insulin sensitization are of great interest, as exercise is a clinically critical intervention for diabetic patients. Some microRNAs (miRs) are secreted from skeletal muscle after exercise where they regulate insulin sensitivity, and have potential as diagnostic markers in diabetic patients. miR-204 is well-known for its involvement in development, cancer, and metabolism; however, its role in exercise-induced glycemic control remains unclear.

View Article and Find Full Text PDF

To compare glycemic outcomes during and following moderate-intensity exercise (MIE), high-intensity interval exercise (HIE), and resistance exercise (RE) in adolescents with type 1 diabetes (T1D) using a hybrid closed-loop (HCL) insulin pump while measuring additional physiological signals associated with activity. Twenty-eight adolescents (average age 16.3 ± 2.

View Article and Find Full Text PDF

The fasting hypoglycemic effect of casein hydrolysate (CH) was investigated in db/db diabetic-like mice using a multiomics integrated analysis of peptidome, transcriptome, and metabolome. Results showed that the oral administration of CH at a dose of 600 mg/kg/day for 4 weeks reduced the fasting blood glucose levels by 14.73 ± 9.

View Article and Find Full Text PDF

Aims: Glucosamine, a widely used dietary supplement, has been linked to potential cardiovascular risks, including atrial fibrillation (AF). This study aimed to investigate the effects of long-term glucosamine supplementation on AF susceptibility and the underlying mechanisms.

Materials And Methods: C57BL/6 J mice were treated with low-dose (15 mg/kg/day) or high-dose (250 mg/kg/day) glucosamine via drinking water for 6 weeks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!