Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Hepatitis E virus (HEV) as a recognized zoonotic pathogen has posed global burden on public health, which is exacerbated by lack of efficient vaccine. In this study, we constructed a recombinant (inaQ-ORF2 gene fusion) Lactococcus lactis (L. lactis) strain NZ3900 that expresses and displays the hepatitis E virus antigen ORF2 utilizing an ice uncleation protein-based anchor system. After oral vaccination of BALB/c mice, significantly higher levels of ORF2-specific mucosal IgA and serum IgG were detected and cellular immunity was also induced. These findings further support that L. lactis-based HEV antigen vaccines could be used for human and animal protection against infection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.intimp.2014.10.032 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!