Turtle utricle dynamic behavior using a combined anatomically accurate model and experimentally measured hair bundle stiffness.

Hear Res

Department of Biomedical Engineering and Mechanics, Blacksburg, VA 24061, USA.

Published: December 2014

Anatomically correct turtle utricle geometry was incorporated into two finite element models. The geometrically accurate model included appropriately shaped macular surface and otoconial layer, compact gel and column filament (or shear) layer thicknesses and thickness distributions. The first model included a shear layer where the effects of hair bundle stiffness was included as part of the shear layer modulus. This solid model's undamped natural frequency was matched to an experimentally measured value. This frequency match established a realistic value of the effective shear layer Young's modulus of 16 Pa. We feel this is the most accurate prediction of this shear layer modulus and fits with other estimates (Kondrachuk, 2001b). The second model incorporated only beam elements in the shear layer to represent hair cell bundle stiffness. The beam element stiffness's were further distributed to represent their location on the neuroepithelial surface. Experimentally measured striola hair cell bundles mean stiffness values were used in the striolar region and the mean extrastriola hair cell bundles stiffness values were used in this region. The results from this second model indicated that hair cell bundle stiffness contributes approximately 40% to the overall stiffness of the shear layer-hair cell bundle complex. This analysis shows that high mass saccules, in general, achieve high gain at the sacrifice of frequency bandwidth. We propose the mechanism by which this can be achieved is through increase the otoconial layer mass. The theoretical difference in gain (deflection per acceleration) is shown for saccules with large otoconial layer mass relative to saccules and utricles with small otoconial layer mass. Also discussed is the necessity of these high mass saccules to increase their overall system shear layer stiffness. Undamped natural frequencies and mode shapes for these sensors are shown.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4254621PMC
http://dx.doi.org/10.1016/j.heares.2014.10.010DOI Listing

Publication Analysis

Top Keywords

shear layer
28
bundle stiffness
16
otoconial layer
16
hair cell
16
experimentally measured
12
cell bundle
12
layer mass
12
layer
11
turtle utricle
8
accurate model
8

Similar Publications

Controlling the structure of polymer solutions near a solid surface is crucial for many industrial processes as it significantly impacts solution flow and influences slip at the interface. To date, only a few techniques have been developed to experimentally investigate this type of interface at the nanometric scale of solid/liquid interactions. In this study, we probe the interface between a smooth sapphire surface and a semidilute polystyrene solution, using neutron reflectivity.

View Article and Find Full Text PDF

As three-dimensional (3D) printing has emerged as a new manufacturing technology, the demand for high-performance 3D printable materials has increased to ensure broad applicability in various load-bearing structures. In particular, the thixotropic properties of materials, which allow them to flow under applied external forces but resist flowing otherwise, have been reported to enable rapid and high-resolution printing owing to their self-standing and easily processable characteristics. In this context, graphene nanosheets exhibit unique π-π stacking interactions between neighboring sheets, likely imparting self-standing capability to low-viscosity inks.

View Article and Find Full Text PDF

Enhanced Compressive Mechanical Properties of Bio-Inspired Lattice Metamaterials with Taper Struts.

Materials (Basel)

December 2024

Suzhou XDM 3D Printing Technology Co., Ltd., Suzhou 215000, China.

The stress distribution within the struts of lattice metamaterials is non-uniform under compressive loads, with stress concentrations typically occurring at the node regions. Inspired by bamboo, this study proposes a type of body-centered cubic (BCC) lattice metamaterial with tapered prism struts (BCCT). The compressive behavior, deformation modes, mechanical properties, and failure mechanisms of BCCT lattice metamaterials are systematically analyzed using finite element methods and validated through compression tests.

View Article and Find Full Text PDF

Innovative Blown Multi-Micro-Nano-Layer Coextrusion: Insights into Rheology and Process Stability.

Polymers (Basel)

December 2024

CNRS, UMR 5223, Ingénierie des Matériaux Polymères, INSA Lyon, Université de Lyon, F-69621 Villeurbanne, France.

The present study introduces an innovative blown coextrusion die technology designed to address a critical gap in the production of multilayer films. Unlike conventional systems, this novel die allows for the creation of films with a high number of layers, ensuring layer integrity even in the micro-nano scale. A key advancement of this die is its ability to increase the number of layers without extending the residence time since it does not require an additional multiplier element.

View Article and Find Full Text PDF

Microwave welding with SiCNW/PMMA nanocomposite thin films: Enhanced joint strength and performance.

Nanotechnology

January 2025

Universiti Teknologi PETRONAS, Centre of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, MALAYSIA, Seri Iskandar, Perak, 32610, MALAYSIA.

Most previously reported susceptors for microwave welding are in powder form. In this study, a thin-film susceptor was employed due to its uniform heating rate and ease of handling. Silicon carbide nanowhisker (SiCNW) were incorporated into a poly(methyl methacrylate) (PMMA) matrix to create a nanocomposite thin film, which served as the susceptor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!