Oral administration of aflatoxin G₁ induces chronic alveolar inflammation associated with lung tumorigenesis.

Toxicol Lett

Lab of Pathology, Hebei Medical University, Shijiazhuang, China; Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China. Electronic address:

Published: February 2015

Our previous studies showed oral gavage of aflatoxin G₁ (AFG₁) induced lung adenocarcinoma in NIH mice. We recently found that a single intratracheal administration of AFG₁ caused chronic inflammatory changes in rat alveolar septum. Here, we examine whether oral gavage of AFG₁ induces chronic lung inflammation and how it contributes to carcinogenesis. We evaluated chronic lung inflammatory responses in Balb/c mice after oral gavage of AFG₁ for 1, 3 and 6 months. Inflammatory responses were heightened in the lung alveolar septum, 3 and 6 months after AFG₁ treatment, evidenced by increased macrophages and lymphocytes infiltration, up-regulation of NF-κB and p-STAT3, and cytokines production. High expression levels of superoxide dismutase (SOD-2) and hemoxygenase-1 (HO-1), two established markers of oxidative stress, were detected in alveolar epithelium of AFG₁-treated mice. Promoted alveolar type II cell (AT-II) proliferation in alveolar epithelium and angiogenesis, as well as increased COX-2 expression were also observed in lung tissues of AFG₁-treated mice. Furthermore, we prolonged survival of the mice in the above model for another 6 months to examine the contribution of AFG₁-induced chronic inflammation to lung tumorigenesis. Twelve months later, we observed that AFG₁ induced alveolar epithelial hyperplasia and adenocarcinoma in Balb/c mice. Up-regulation of NF-κB, p-STAT3, and COX-2 was also induced in lung adenocarcinoma, thus establishing a link between AFG₁-induced chronic inflammation and lung tumorigenesis. This is the first study to show that oral administration of AFG₁ could induce chronic lung inflammation, which may provide a pro-tumor microenvironment to contribute to lung tumorigenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.toxlet.2014.11.002DOI Listing

Publication Analysis

Top Keywords

lung tumorigenesis
16
oral gavage
12
chronic lung
12
lung
11
oral administration
8
aflatoxin g₁
8
induces chronic
8
afg₁ induced
8
induced lung
8
lung adenocarcinoma
8

Similar Publications

Lung cancer is correlated with a high death rate, with approximately 1.8 million mortality cases reported worldwide in 2022. Despite development in the control of lung cancer, most cases are detected at higher stages with short survival rates.

View Article and Find Full Text PDF

Beta papillomaviruses: From foe to friend in skin cancer immunity.

Cancer Cell

December 2024

Pre-Cancer Immunology Laboratory, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK; Cancer Research UK Lung Cancer Centre of Excellence. Electronic address:

In this issue of Cancer Cell, Son et al. highlight an unexpected role for skin β-papillomaviruses in the protection against skin carcinogenesis. T cell immunity to skin papillomaviruses blocks the expansion of p53 mutant clones in ultraviolet (UV) radiation-damaged skin, preventing the development of skin cancer.

View Article and Find Full Text PDF

Objective: Interleukin-17 E (IL-17E) is a pro-inflammatory cytokine that participates in the inflammatory response and tumorigenesis. However, the function of IL-17E in non-small cell lung cancer (NSCLC) remains largely unknown.

Methods: The clinical value of IL-17E was determined by immunohistochemistry (IHC) in 75 cases of NSCLC tissues.

View Article and Find Full Text PDF

Long non-coding RNA LINC01214 is reported to be up-regulated in non-small cell lung cancer (NSCLC), however, its function in NSCLC has not been elucidated yet. In our study, we verified that LINC01214 was aberrantly higher in the tumor tissues and cell lines than that in the normal controls, and was relevant to the severity and prognosis of NSCLC through using real-time quantitative PCR. Then, 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide assay and flow cytometry illustrated that knocking down LINC01214 restrained cell proliferation and promoted apoptosis in A549 and H1299 cells.

View Article and Find Full Text PDF

Targeted LNPs deliver IL-15 superagonists mRNA for precision cancer therapy.

Biomaterials

December 2024

Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China; Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing, 100871, China. Electronic address:

Interleukin-15 (IL-15) emerges as a promising immunotherapeutic candidate, but the therapeutic utility remains concern due to the unexpected systematic stress. Here, we propose that the mRNA lipid nanoparticle (mRNA-LNP) system can balance the issue through targeted delivery to increase IL-15 concentration in the tumor area and reduce leakage into the circulation. In the established Structure-driven TARgeting (STAR) platform, the LNP and LNP can effectively and selectively deliver optimized IL-15 superagonists mRNAs to local and lungs, respectively, in relevant tumor models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!