Intranasal immunization of recombinant Lactococcus lactis induces protection against H5N1 virus in ferrets.

Virus Res

Department of Biotechnology, College of Life Science and Food Engineering, Nanchang University, Jiangxi 330031, China.

Published: January 2015

AI Article Synopsis

  • The spread of highly pathogenic avian influenza A (HPAI) H5N1 in birds and humans highlights the urgent need for a safe and effective vaccine.
  • Lactococcus lactis (L. lactis) is identified as a promising platform for developing a mucosal vaccine, with intranasal immunization potentially enhancing protective immune responses.
  • In a study with ferrets, the L. lactis-psA-HA1 vaccine elicited strong immune responses and completely protected them from H5N1 virus challenges, suggesting its potential as a pandemic vaccine option.

Article Abstract

The increasing outbreaks of highly pathogenic avian influenza A (HPAI) H5N1 viruses in birds and human bring out an urgent need to develop a safe and effective vaccine to control and prevent H5N1 infection. Lactococcus lactis (L. lactis) based vaccine platform is a promising approach for mucosal H5N1 vaccine development. Intranasal immunization is the potential to induce mucosal immune response which is associated with protective immunity. To develop a safe and effective mucosal vaccine against HAPI H5N1, we extended our previous study by evaluating the immunogenicity of L. lactis-psA-HA1 in the absence of adjuvant via intranasal route in the ferret model. Ferrets administered intranasally with L. lactis-pgsA-HA1 could elicit robust humoral and mucosal immune responses, as well as significant HI titers. Importantly, ferrets were completely protected from H5N1 virus challenge. These findings suggest that L. lactis-pgsA-HA1 can be considered an alternative mucosal vaccine during A/H5N1 pandemic.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.virusres.2014.11.009DOI Listing

Publication Analysis

Top Keywords

intranasal immunization
8
lactococcus lactis
8
h5n1 virus
8
develop safe
8
safe effective
8
mucosal immune
8
mucosal vaccine
8
h5n1
6
vaccine
5
mucosal
5

Similar Publications

Unlabelled: Current influenza vaccination approaches protect against specific viral strains, but do not consistently induce broad and long-lasting protection to the diversity of circulating influenza viruses. Single-cycle viruses delivered to the respiratory tract may offer a promising solution as they safely express a diverse array of viral antigens by undergoing just one round of cell infection in their host and stimulate broadly protective resident memory T-cell responses in the lung. We have previously developed a vaccine candidate called S-FLU, which is limited to a single cycle of infection by inactivation of the hemagglutinin signal sequence and induces a broadly cross-reactive T-cell response and antibodies to neuraminidase, but fails to induce neutralizing antibodies to hemagglutinin after intranasal administration.

View Article and Find Full Text PDF

Allergen-induced activation of epithelial P2Y receptors promotes ATP exocytosis and type 2 immunity in airways.

J Allergy Clin Immunol

January 2025

Departments of Animal Science, Integrative Biology and Physiology, University of Minnesota,St. Paul, MN, 55108. Electronic address:

Background: Environmental allergens induce the release of danger signals from the airway epithelium that trigger type 2 immune responses and promote airway inflammation.

Objective: To investigate the role of allergen-stimulated P2Y receptor activation in regulating ATP, IL-33 and DNA release by human bronchial epithelial (hBE) cells and mouse airways.

Methods: hBE cells were exposed to Alternaria alternata extract and secretion of ATP, IL-33 and DNA were studied in vitro.

View Article and Find Full Text PDF

Background: Influenza viruses with truncated NS1 proteins show promise as viral vectors and candidates for mucosal universal influenza vaccines. These mutant NS1 viruses, which lack the N-terminal half of the NS1 protein (124 a.a.

View Article and Find Full Text PDF

Background: Equine herpesvirus type 1 (EHV1) is a ubiquitous viral pathogen infecting the equine population worldwide. EHV1 infection causes respiratory illness, abortion, neonatal foal mortality, and myeloencephalopathy. The currently available modified live EHV1 vaccines have safety and efficacy limitations.

View Article and Find Full Text PDF

Intranasal vaccination enhances protection against respiratory viruses by providing stimuli to the immune system at the primary site of infection, promoting a balanced and effective response. Influenza vectors with truncated NS1 are a promising vaccine approach that ensures a pronounced local CD8+ T-cellular immune response. Here, we describe the protective and immunomodulating properties of an influenza vector FluVec-N carrying the C-terminal fragment of the SARS-CoV-2 nucleoprotein within a truncated NS1 open reading frame.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!