New biotechnology-derived crop traits have been developed utilizing the natural process of RNA interference (RNAi). However, plant-produced double stranded RNAs (dsRNAs) are not known to present a hazard to mammals because numerous biological barriers limit uptake and potential for activity. To evaluate this experimentally, dsRNA sequences matching the mouse vATPase gene (an established target for control of corn rootworms) were evaluated in a 28-day toxicity study with mice. Test groups were orally gavaged with escalating doses of either a pool of four 21-mer vATPase small interfering RNAs (siRNAs) or a 218-base pair vATPase dsRNA. There were no treatment-related effects on body weight, food consumption, clinical observations, clinical chemistry, hematology, gross pathology, or histopathology endpoints. The highest dose levels tested were considered to be the no observed adverse effect levels (NOAELs) for the 21-mer siRNAs (48 mg/kg/day) and the 218 bp dsRNA (64 mg/kg/day). As an additional exploratory endpoint, vATPase gene expression, was evaluated in selected gastrointestinal tract and systemic tissues. The results of this assay did not indicate treatment-related suppression of vATPase. The results of this study indicate that orally ingested dsRNAs, even those targeting a gene in the test species, do not produce adverse health effects in mammals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yrtph.2014.10.016DOI Listing

Publication Analysis

Top Keywords

small interfering
8
interfering rnas
8
vatpase gene
8
vatpase
5
28-day oral
4
oral toxicity
4
toxicity evaluation
4
evaluation small
4
rnas long
4
long double-stranded
4

Similar Publications

Background: N6-methyladenosine (m6A) is one of the most conserved internal RNA modifications, which has been implicated in many biological processes, such as apoptosis and proliferation. Wilms tumor 1-associating protein (WTAP), as a key component of m6A methylation, is a nuclear protein that has been associated with the regulation of proliferation and apoptosis. Rheumatoid arthritis (RA), a systemic, infiltrating autoimmune disease, is characterized by synovial hyperplasia.

View Article and Find Full Text PDF

Ultrasonic Microfluidic Method Used for siHSP47 Loaded in Human Embryonic Kidney Cell-Derived Exosomes for Inhibiting TGF-β1 Induced Fibroblast Differentiation and Migration.

Int J Mol Sci

January 2025

School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and devastating lung disorder. In response to transforming growth factor-β (TGF-β), normal lung cells proliferate and differentiate into myofibroblasts, which are instrumental in promoting disease progression. Small interfering RNA (siRNA) targeting heat shock protein 47 (HSP47) has been demonstrated to alleviate IPF by blocking collagen synthesis and secretion.

View Article and Find Full Text PDF

RNA Structure: Past, Future, and Gene Therapy Applications.

Int J Mol Sci

December 2024

ACCESS Health International, 384 West Lane, Ridgefield, CT 06877, USA.

First believed to be a simple intermediary between the information encoded in deoxyribonucleic acid and that functionally displayed in proteins, ribonucleic acid (RNA) is now known to have many functions through its abundance and intricate, ubiquitous, diverse, and dynamic structure. About 70-90% of the human genome is transcribed into protein-coding and noncoding RNAs as main determinants along with regulatory sequences of cellular to populational biological diversity. From the nucleotide sequence or primary structure, through Watson-Crick pairing self-folding or secondary structure, to compaction via longer distance Watson-Crick and non-Watson-Crick interactions or tertiary structure, and interactions with RNA or other biopolymers or quaternary structure, or with metabolites and biomolecules or quinary structure, RNA structure plays a critical role in RNA's lifecycle from transcription to decay and many cellular processes.

View Article and Find Full Text PDF

Cell-penetrating peptides (CPPs) are a diverse group of peptides, typically composed of 4 to 40 amino acids, known for their unique ability to transport a wide range of substances-such as small molecules, plasmid DNA, small interfering RNA, proteins, viruses, and nanoparticles-across cellular membranes while preserving the integrity of the cargo. CPPs exhibit passive and non-selective behavior, often requiring functionalization or chemical modification to enhance their specificity and efficacy. The precise mechanisms governing the cellular uptake of CPPs remain ambiguous; however, electrostatic interactions between positively charged amino acids and negatively charged glycosaminoglycans on the membrane, particularly heparan sulfate proteoglycans, are considered the initial crucial step for CPP uptake.

View Article and Find Full Text PDF

H-F cross-polarization magic angle spinning dynamic nuclear polarization NMR investigation of advanced pharmaceutical formulations.

J Magn Reson

December 2024

Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden.

A new 3.2 mm H-F-X magic angle spinning dynamic nuclear polarization NMR (MAS DNP-NMR) probe was developed with a unique coil design with separate radiofrequency channels for H excitation and C or F detection to enable acquisition of H-F cross-polarization (CP) MAS experiments, direct-detected F spectra with proton decoupling, and acquisition on C with simultaneous double decoupling on the H and 19F channels as well as H-F-C double-CP experiments under low temperature MAS DNP conditions. We use these sequences to study AZD2811, which is an active pharmaceutical ingredient (API), in its pure dry state as well as in its corresponding drug delivery formulation consisting of drug-loaded polymeric nanoparticles (PNPs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!