l-DOPA decarboxylase (DDC) is a multiply-regulated gene which encodes the enzyme that catalyzes the biosynthesis of dopamine in humans. MicroRNAs comprise a novel class of endogenously transcribed small RNAs that can post-transcriptionally regulate the expression of various genes. Given that the mechanism of microRNA target recognition remains elusive, several genes, including DDC, have not yet been identified as microRNA targets. Nevertheless, a number of specifically designed bioinformatic algorithms provide candidate miRNAs for almost every gene, but still their results exhibit moderate accuracy and should be experimentally validated. Motivated by the above, we herein sought to discover a microRNA that regulates DDC expression. By using the current algorithms according to bibliographic recommendations we found that miR-145 could be predicted with high specificity as a candidate regulatory microRNA for DDC expression. Thus, a validation experiment followed by firstly transfecting an appropriate cell culture system with a synthetic miR-145 sequence and sequentially assessing the mRNA and protein levels of DDC via real-time PCR and Western blotting, respectively. Our analysis revealed that miR-145 had no significant impact on protein levels of DDC but managed to dramatically downregulate its mRNA expression. Overall, the experimental and bioinformatic analysis conducted herein indicate that miR-145 has the ability to regulate DDC mRNA expression and potentially this occurs by recognizing its mRNA as a target.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gene.2014.10.043 | DOI Listing |
Eur J Pharm Biopharm
January 2025
Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410006, China. Electronic address:
The narrow absorption window of levodopa and the significant impact of peripheral decarboxylase are the most limiting factors in maintaining prolonged and smooth plasma concentration in patients with Parkinson's disease (PD). Therefore, this study aims to design a novel gastroretentive carbidopa-levodopa three-layer tablet, which consists of an expansion layer, an immediate-release layer, and a sustained-release layer. The expansion layer rapidly expanded with sufficient structural strength and stayed in the beagle's stomach for more than 10 h, delineating excellent gastric retention effects.
View Article and Find Full Text PDFPLoS One
December 2024
Faculty of Science, Department of Zoology, Alexandria University, Alexandria, Egypt.
The present study investigates the neuroprotective effects of the sea urchin Paracentrotus lividus gonadal extract on rotenone-induced neurotoxicity in a Parkinson's disease (PD) rat model. Parkinson's disease, characterized by the progressive loss of dopaminergic neurons in the substantia nigra (SN), is exacerbated by oxidative stress and neuroinflammation. The study involved fifty Wistar rats divided into five groups: control, dimethyl sulfoxide (DMSO) control, Paracentrotus lividus gonadal extract-treated, rotenone-treated, and combined rotenone with Paracentrotus lividus gonadal extract-treated.
View Article and Find Full Text PDFArch Ital Urol Androl
October 2024
Department of Urology, School of Medicine, Ibb University.
Objectives: Parkinson's disease is the most common neurodegenerative disease. Combining levodopa with other drugs, including decarboxylase inhibitors (DCI) is its most effective treatment. Urinary tract infection (UTI) is the most common cause of hospitalization in Parkinson's patients, making it crucial to find an appropriate treatment to reduce the incidence of this complication.
View Article and Find Full Text PDFAsian J Pharm Sci
December 2024
State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
Parkinson's disease (PD) poses a significant therapeutic challenge, mainly due to the limited ability of drugs to cross the blood-brain barrier (BBB) without undergoing metabolic transformations. Levodopa, a key component of dopamine replacement therapy, effectively enhances dopaminergic activity. However, it encounters obstacles from peripheral decarboxylase, hindering its passage through the BBB.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!