Curcumin has been shown to improve cardiac function by reducing degradation of extracellular matrix and inhibiting synthesis of collagen after ischemia. This study tested the hypothesis that attenuation of maladaptive cardiac repair with curcumin is associated with a dual ACE-inhibition and angiotensin II AT1 receptor antagonism after myocardial infarction. Sprague-Dawley rats were subjected to 45min ischemia followed by 7 and 42 days of reperfusion, respectively. Curcumin was fed orally at a dose of 150mg/kg/day only during reperfusion. Relative to the control animals, dietary treatment with curcumin significantly reduced levels of ACE and AT1 receptor protein as determined by Western blot assay, coincident with less locally-expressed ACE and AT1 receptor in myocardium and coronary vessels as identified by immunohistochemistry. Along with this inhibition, curcumin significantly increased protein level of AT2 receptor and its expression compared with the control. As evidenced by less collagen deposition in fibrotic myocardium, curcumin also reduced the extent of collagen-rich scar and increased mass of viable myocardium detected by Masson׳s trichrome staining. Echocardiography showed that the wall thickness of the infarcted anterior septum in the curcumin group was significantly greater than that in the control group. Cardiac contractile function was improved in the curcumin treated animals as measured by fraction shortening and ejection fraction. In cultured cardiac muscle cells, curcumin inhibited oxidant-induced AT1 receptor expression and promoted cell survival. These results suggest that curcumin attenuates maladaptive cardiac repair and enhances cardiac function, primarily mediated by a dual ACE-inhibition and AT1 receptor antagonism after myocardial infarction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2014.11.001DOI Listing

Publication Analysis

Top Keywords

at1 receptor
24
dual ace-inhibition
12
receptor antagonism
12
maladaptive cardiac
12
cardiac repair
12
curcumin
11
ace-inhibition angiotensin
8
angiotensin at1
8
cardiac function
8
antagonism myocardial
8

Similar Publications

Angiotensin II type-1 receptor autoantibodies and effects in neonates of women with preeclampsia.

BMC Pregnancy Childbirth

January 2025

Collection Biologique de L'Hôpital de La Mère Et de L'Enfant CB-HME (Mother and Child Biobank), University Hospital Center, 8 Avenue Dominique Larrey, Limoges, France.

Background: Maternal agonistic autoantibodies against the angiotensin II type 1 receptor (AT1-AAs) have been implicated in the pathophysiology of preeclampsia, but their presence in their offsprings and their possible neonatal effects have not been specifically explored. This prospective study aimed to evaluate the presence of AT1-AAs and their potential clinical effects in neonates of AT1-AAs positive mothers.

Methods: Women with preeclampsia and their neonates were included.

View Article and Find Full Text PDF

Background: In patients with diabetes mellitus (DM), vascular endothelial dysfunction (VED) is the main reason for impaired life expectancy. Melatonin (MEL) demonstrates wide-ranging effects across various organs and exhibits pleiotropic characteristics. The current study aims to investigate the modulatory roles of MEL vascular response to angiotensin II (Ang II) and its receptors including angiotensin type 1 receptor (AT-1 R) and angiotensin type 2 receptor (AT-2 R) in isolated thoracic aorta of non-diabetes (non-DM) and diabetes (DM) rats.

View Article and Find Full Text PDF

Blockade of PVN neuromedin B receptor alleviates inflammation via the RAS/ROS/NF-κB pathway in spontaneously hypertensive rats.

Brain Res Bull

December 2024

Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China. Electronic address:

Neuromedin B (NMB) has potentially great impacts on the development of cardiovascular diseases by promoting hypertensive and sympatho-excitation effects. However, studies regarding the NMB function in paraventricular nucleus (PVN) are lacking. With selective neuromedin B receptor (NMBR) antagonist, BIM-23127, we aim to determine whether the blockade of NMB function in PVN could alleviate central inflammation and attenuate hypertensive responses.

View Article and Find Full Text PDF

Utilizing data from the Vitamin C, Thiamine, and Steroids in Sepsis (VICTAS) Trial, this hub model was developed to limit seventeen Renin-Angiotensin-Aldosterone System (RAAS) components as three entrance and four exits, to facilitate the calculation of a model as one egress unknown, the angiotensin type 1 (AT1) receptor. Following previous evidence relating renin levels to mortality, this study found controls were more like sepsis patients with levels < renin quartile 1 (Q1) for calculated AT1, while more like sepsis patients with renin levels > quartile 3 (Q4) for measured aldosterone levels. Additionally differential discrete correlate summation (DCS) analysis indicates AT1, aldosterone and renin as major hub nodes in this independent DCS model of metabolic data inputs.

View Article and Find Full Text PDF

NMDA receptors in the prefrontal cortex (PFC) play a crucial role in cognitive functions. Previous research has indicated that angiotensin II (Ang II) affects learning and memory. This study aimed to examine how Ang II impacts NMDA receptor activity in layer V pyramidal cells of the rat PFC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!