Somatostatin (SST) is a peptide hormone that regulates the endocrine system and affects neurotransmission via interaction with G protein-coupled SST receptors and inhibition of the release of different hormones. The aim of this study was to investigate whether the analgesic properties of the selective SSTR4 agonist J-2156 are mediated via peripheral and/or spinal receptors. Effect on mechanical hyperalgesia in the Complete Freund׳s Adjuvant (CFA) model was measured after intraperitoneal application of J-2156. Electrophysiological neuronal recordings were conducted 24 h after injection of CFA or vehicle into the paw of Wistar rats. Mechanosensitivity of peripheral afferents of the saphenous nerve as well as of spinal wide dynamic range (WDR) and nociceptive-specific (NS) neurons were measured after systemic or spinal application of J-2156. In CFA animals J-2156 dose dependently reduced hyperalgesia in behavioral studies. The minimal effective dose was 0.1 mg/kg. Mechanosensitivity of peripheral afferents and spinal neurons was significantly reduced by J-2156. NS neurons were dose dependently inhibited by J-2156 while in WDR neurons only the highest concentration of 100 µM had an effect. In sham controls, J-2156 had no effect on neuronal activity. We demonstrated that J-2156 dose-dependently reduces peripheral and spinal neuronal excitability in the CFA rat model without affecting physiological pain transmission. Given the high concentration of the compound required to inhibit spinal neurons, it is unlikely that the behavioral effect seen in CFA model is mediated centrally. Overall these data demonstrated that the analgesic effect of J-2156 is mediated mainly via peripheral SST4 receptors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejphar.2014.11.003 | DOI Listing |
Commun Biol
January 2025
Department of Occupational and Environmental Health, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China.
Vibration induced damage to the peripheral circulatory system is thought to be an early stage of hand-arm vibration syndrome (HAVS) caused by occupational exposure to hand-transmitted vibration (HTV). This study investigated the mechanisms underlying vibration-induced vascular injury, focusing on the role of Piezo1, a mechanosensitive channel, and its association with the NF-κB/p65 signaling pathway. We demonstrated that vibration exposure leads to Piezo1-mediated upregulation of angiogenic chemokines, including CCL2, CCL5, CXCL1, CXCL2, and CXCL10, through the NF-κB/p65 pathway.
View Article and Find Full Text PDFPain Rep
February 2025
Department of Neurology, University Hospital Würzburg, Würzburg, Germany.
About 50% of women with fibromyalgia syndrome have reduced skin innervation. This finding is consistent in patient cohorts from different regions of the world. Small fiber function may also be affected, as shown by various studies using different methods, such as quantitative sensory testing or special small fiber neurophysiology such as C-fiber microneurography.
View Article and Find Full Text PDFNeural Regen Res
December 2024
Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.
Vision restoration presents a considerable challenge in the realm of regenerative medicine, while recent progress in ultrasound stimulation has displayed potential as a non-invasive therapeutic approach. This narrative review offers a comprehensive overview of current research on ultrasound-stimulated neuromodulation, emphasizing its potential as a treatment modality for various nerve injuries. By examining of the efficacy of different types of ultrasound stimulation in modulating peripheral and optic nerves, we can delve into their underlying molecular mechanisms.
View Article and Find Full Text PDFRes Sq
December 2024
Department of Biology, Indiana University, Indianapolis, IN.
iScience
December 2024
Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden.
Fibroblasts are adherent cells that maintain tissue homeostasis by sensing and responding to the extracellular matrix (ECM). Focal adhesions (FAs) link these ECM changes to actomyosin dynamics through changes in its composition, influencing cellular response. Septin-7 (Sept-7) has previously been found in FA proteomics studies and shown to influence ECM sensing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!