MiR-193a-3p promotes the multi-chemoresistance of bladder cancer by targeting the HOXC9 gene.

Cancer Lett

Cancer Epigenetics Program, Anhui Cancer Hospital, Hefei, Anhui 230031, China; Cancer Epigenetics Program, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University, Shanghai 200032, China. Electronic address:

Published: February 2015

Chemoresistance prevents the curative cancer chemotherapy and presents a formidable challenge for both cancer researchers and clinicians. We have previously shown that miR-193a-3p promotes the multi-chemoresistance of bladder cancer cells via repressing its three target genes: SRSF2, PLAU and HIC2. Here, we showed that as a new direct target, the homeobox C9 (HOXC9) gene also executes the promoting effect of miR-193a-3p on the bladder cancer chemoresistance from a systematic study of multi-chemosensitive (5637) and resistant (H-bc) bladder cancer cell lines in both cell culture and tumor-xenograft/nude mice system. Paralleled with the changes in the drug-triggered cell death, the activities of both DNA damage response and oxidative stress pathways were drastically altered by a forced reversal of miR-193a-3p or HOXC9 levels in bladder cancer cells. In addition to a new mechanistic insight, our results provide a set of the essential genes in the miR-193a-3p/HOXC9/DNA damage response/oxidative stress pathway axis as the diagnostic targets for the guided anti-bladder cancer chemotherapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.canlet.2014.11.002DOI Listing

Publication Analysis

Top Keywords

bladder cancer
20
mir-193a-3p promotes
8
promotes multi-chemoresistance
8
multi-chemoresistance bladder
8
cancer
8
hoxc9 gene
8
cancer chemotherapy
8
cancer cells
8
bladder
5
mir-193a-3p
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!