Mitigating cutaneous sensation differences during tDCS: comparing sham versus low intensity control conditions.

Brain Stimul

US. Army Natick Soldier Research, Development, and Engineering Center, RDNS-SEW-THC, 15 Kansas St., Natick, MA, USA; Tufts University, Department of Psychology, 490 Boston Ave., Medford, MA, USA.

Published: September 2015

Background: Cutaneous sensations at electrode sites during the administration of direct current brain stimulation may inadvertently influence participants' subjective experience and task performance.

Objective: The present study evaluated the utility of a methodological variation that substitutes sham administration with very low intensity (0.5 mA) current delivery.

Methods: We used a 4 × 1 high-definition ring electrode transcranial direct current (HD-tDCS) system to target the left dorsolateral prefrontal cortex (Brodmann's Area 9). Four stimulation conditions were compared in a repeated-measures design: sham 2.0 mA and 0.5 mA intensity, versus active 2.0 mA and 0.5 mA intensity. During stimulation participants performed a cognitive interference task that activates the cingulo-frontal-parietal network, and periodically provided perceived sensation ratings.

Results: We demonstrate that a relatively low intensity control condition attenuates otherwise large differences in perceived sensation between active and sham conditions. Critically, behavioral task differences maintained between the two active conditions.

Conclusion: A low intensity control stimulation condition may prove a viable methodological alternative to conventional sham techniques used in repeated-measures designs, though important limitations are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brs.2014.09.015DOI Listing

Publication Analysis

Top Keywords

low intensity
16
intensity control
12
direct current
8
perceived sensation
8
intensity
6
sham
5
mitigating cutaneous
4
cutaneous sensation
4
sensation differences
4
differences tdcs
4

Similar Publications

Advancements in Raman light sheet microscopy have provided a powerful, non-invasive, marker-free method for imaging complex 3D biological structures, such as cell cultures and spheroids. By combining 3D tomograms made by Rayleigh scattering, Raman scattering, and fluorescence detection, this modality captures complementary spatial and molecular data, critical for biomedical research, histology, and drug discovery. Despite its capabilities, Raman light sheet microscopy faces inherent limitations, including low signal intensity, high noise levels, and restricted spatial resolution, which impede the visualization of fine subcellular structures.

View Article and Find Full Text PDF

This study examines the relationship between cognitive and affective flexibility, two critical aspects of adaptability. Cognitive flexibility involves switching between activities as rules change, assessed through task-switching or neuropsychological tests and questionnaires. Affective flexibility, meanwhile, refers to shifting between emotional and non-emotional tasks or states.

View Article and Find Full Text PDF

Sustainable Carbon Dots Loaded into Carboxymethylcellulose Based Hydrogels for Uterine Cancer Bioimaging.

Pharmaceutics

November 2024

iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisboa, 1049-001 Lisbon, Portugal.

: The development of innovative materials for disease diagnostics and therapeutics is a fast-growing area of scientific research. In this work, we report the development of innovative hydrogels incorporating carbon dots (Cdots) for bioimaging purposes. : The Cdots were prepared using a sustainable and low-cost process, starting with an underused fiber from the Brazilian semiarid region.

View Article and Find Full Text PDF

The spectra of internal friction and temperature dependencies of the frequency of a free-damped oscillation process excited in the specimens of an amorphous-crystalline copolymer of polyoxymethylene with the co-monomer trioxane (POM-C) with a degree of crystallinity ~60% in the temperature range from -150 °C to +170 °C has been studied. It has been established that the spectra of internal friction show five local dissipative processes of varying intensity, manifested in different temperature ranges of the spectrum. An anomalous decrease in the frequency of the oscillatory process was detected in the temperature ranges where the most intense dissipative losses appear on the spectrum of internal friction.

View Article and Find Full Text PDF

Given the current construction waste accumulation problem, to utilize the resource of red brick solid waste, construction waste red brick was used as a concrete coarse aggregate combined with polypropylene fiber to prepare PPF (polypropylene fiber)-reinforced recycled brick aggregate concrete. Through a cube compression test, axial compression test, and four-point bending test of 15 groups of specimens, the influences of the aggregate replacement rate of recycled brick and the PPF volume on the mechanical properties of recycled brick aggregate concrete reinforced by PPF were studied, and a strength parameter calculation formula was constructed and modified based on the above. Finally, combined with a life cycle assessment (LCA), the carbon emissions of raw materials were analyzed and evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!