This study aims to assess near-infrared reflectance spectroscopy feasibility for predicting beef fatty acid (FA) composition. Experimental scheme included four breeds (Angus, Blond d'Aquitaine, Charolais, Limousin) and three muscles, Longissimus thoracis (LT), Rectus abdominis (RA), Semitendinosus (ST). The results showed that 1) increasing FA content variability with several breeds increased calibration model reliability (R(2)CV>0.86) for the major individual and groups of FA unless polyunsaturated FAs, 2) Longissimus thoracis FAs were better predicted than RA FAs while no ST FAs were correctly predicted (R(2)CV<0.71). This difference could be explained by FA content, FA variability or specific muscle physico-chemical characteristics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.meatsci.2014.08.014DOI Listing

Publication Analysis

Top Keywords

near-infrared reflectance
8
reflectance spectroscopy
8
fatty acid
8
acid composition
8
longissimus thoracis
8
breeds muscle
4
muscle types
4
types modulate
4
modulate performance
4
performance near-infrared
4

Similar Publications

Off-axis integrated cavity output spectroscopy (OA-ICOS) allows the laser to be reflected multiple times inside the cavity, increasing the effective absorption path length and thus improving sensitivity. However, OA-ICOS systems are affected by various types of noise, and traditional filtering methods offer low processing efficiency and perform limited feature extraction. Deep learning models enable us to extract important features from large-scale, complex spectral data and analyze them efficiently and accurately.

View Article and Find Full Text PDF

The perceived colors of silicon-on-insulator (SOI) wafers with etched Si surface layers of thickness 90 nm to 30 nm vary from turquoise to purple to golden. Measured reflectance curves spanning ultraviolet, visible, and near infrared wavelengths have an amplitude modulated oscillatory pattern. Multilayer reflectance calculations indicate the oscillatory pattern results from the 2 µm thick buried SiO layer which functions as a nearly lossless reflective Fabry-Perot etalon in the near infrared where SiO and Si are transparent.

View Article and Find Full Text PDF

Monitoring of perioperative tissue perfusion and impact on patient outcomes.

J Cardiothorac Surg

January 2025

Department of Anesthesiology, Zhongda hospital, Southeast University, No. 87 Dingjiaqiao, Nanjing City, 210009, Jiangsu Province, China.

Monitoring perioperative tissue perfusion is crucial in clinical anesthesia to protect organs and ensure patient safety. Indicators like hemodynamic parameters, tissue metabolism, and microcirculation markers are used for assessment. Studies show intraoperative hypotension negatively impacts outcomes, though blood pressure alone may not reflect tissue perfusion accurately.

View Article and Find Full Text PDF

Near-infrared light reflection for the early detection of proximal caries in posterior teeth: an in vivo study.

BMC Oral Health

January 2025

Center for Plastic & Reconstructive Surgery, Department of Stomatology, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.

Background: The purpose of this study was to evaluate the validity of near-infrared light reflection for detecting different depths of proximal caries in posterior teeth and to compare it with commonly used clinical oral examinations and bitewing radiography images.

Methods: Twenty-six patients with a total of 516 proximal surfaces were included in this study. The ground truth of the proximal caries was determined through a consensus reached by two experienced dentists after an intraoral examination assisted by bitewing radiographs.

View Article and Find Full Text PDF

Online monitoring of water quality in industrial wastewater treatment process based on near-infrared spectroscopy.

Water Res

January 2025

NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Shandong, Jinan 250012, China; Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, Jinan 250021, China; Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Shandong, Jinan 250012, China; Shandong Engineering Research Center for Transdermal Drug Delivery Systems, Shandong, Jinan 250098, China. Electronic address:

Water quality monitoring is one of the critical aspects of industrial wastewater treatment, which is important for checking the treatment effect, optimizing the treatment technology and ensuring that the water quality meets the standard. Chemical oxygen demand (COD) is a key indicator for monitoring water quality, which reflects the degree of organic matter pollution in water bodies. However, the current methods for determining COD values have drawbacks such as slow speed and complicated operation, which hardly meet the demand of online monitoring.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!