Objective: To assess the effectiveness of l-cystine dimethyl ester (CDME), an inhibitor of cystine crystal growth, for the treatment of cystine urolithiasis in an Slc3a1 knockout mouse model of cystinuria.
Materials And Methods: CDME (200 μg per mouse) or water was delivered by gavage daily for 4 weeks. Higher doses by gavage or in the water supply were administered to assess organ toxicity. Urinary amino acids and cystine stones were analyzed to assess drug efficacy using several analytical methods.
Results: Treatment with CDME led to a significant decrease in stone size compared with that of the water group (P = .0002), but the number of stones was greater (P = .005). The change in stone size distribution between the 2 groups was evident by micro computed tomography. Overall, cystine excretion in urine was the same between the 2 groups (P = .23), indicating that CDME did not interfere with cystine metabolism. Scanning electron microscopy analysis of cystine stones from the CDME group demonstrated a change in crystal habit, with numerous small crystals. l-cysteine methyl ester was detected by ultra-performance liquid chromatography-mass spectrometer in stones from the CDME group only, indicating that a CDME metabolite was incorporated into the crystal structure. No pathologic changes were observed at the doses tested.
Conclusion: These data demonstrate that CDME promotes formation of small stones but does not prevent stone formation, consistent with the hypothesis that CDME inhibits cystine crystal growth. Combined with the lack of observed adverse effects, our findings support the use of CDME as a viable treatment for cystine urolithiasis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4498569 | PMC |
http://dx.doi.org/10.1016/j.urology.2014.07.043 | DOI Listing |
Inorg Chem
December 2024
Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom.
The reaction of [Ir(IPr)H][BAr] (; IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene; BAr = B{CH(3,5-CF)}) with ZnMe proceeds with CH elimination to give [Ir(IPr)(IPr')(ZnMe)H][BAr] (, where (IPr') is a cyclometalated IPr ligand). reacts with H to form tetrahydride [Ir(IPr)(ZnMe)H][BAr], , that loses H under forcing conditions to form [Ir(IPr)(ZnMe)H][BAr], . Crystallization of also results in the formation of its noncyclometalated isomer, [Ir(IPr)(ZnMe)][BAr], , in the solid state.
View Article and Find Full Text PDFACS Med Chem Lett
July 2024
Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States.
Cystinuria, a rare genetic disorder, is characterized by defective l-cystine reabsorption from the renal proximal tubule, resulting in abnormally high concentrations of l-cystine and subsequent l-cystine crystallization in urine and stone formation in the urinary tract. Inhibition of l-cystine crystallization by l-cystine diamides such as LH708 () represents a promising new approach to prevent stone formation in patients with cystinuria. While shows promising efficacy and a good safety profile in a -knockout mouse model of cystinuria, further structural modification of led to the discovery of 8-l-cystinyl bis(1,8-diazaspiro[4.
View Article and Find Full Text PDFProc Mach Learn Res
July 2023
Department of Civil and Environmental Engineering, Duke University, Durham, NC, USA.
Med Chem Res
July 2023
Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States.
Kidney stone diseases are increasing globally in prevalence and recurrence rates, indicating an urgent medical need for developing new therapies that can prevent stone formation. One approach we have been working on is to develop small molecule inhibitors that can interfere with the crystallization process of the chemical substances that form the stones. For these drug discovery efforts, it is critical to have available easily accessible assay methods to evaluate the potential inhibitors and rank them for structure-activity relationship studies.
View Article and Find Full Text PDFJ Dairy Sci
August 2022
Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853.
Delayed milk ejection, manifested most often as bimodal milk flow, occurs when the cisternal milk fraction is removed before the alveolar milk reaches the gland cistern. It is thought to be a consequence of not meeting cows' physiological needs, due to insufficient premilking teat stimulation, inadequate timing of milking unit attachment, or both. It has been associated with decreased milking efficiency, reduced milk yield, and impaired teat and udder health.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!