Distance measurements using double electron-electron resonance (DEER) and Gd(3+) chelates for spin labels (GdSL) have been shown to be an attractive alternative to nitroxide spin labels at W-band (95GHz). The maximal distance that can be accessed by DEER measurements and the sensitivity of such measurements strongly depends on the phase relaxation of Gd(3+) chelates in frozen, glassy solutions. In this work, we explore the phase relaxation of Gd(3+)-DOTA as a representative of GdSL in temperature and concentration ranges typically used for W-band DEER measurements. We observed that in addition to the usual mechanisms of phase relaxation known for nitroxide based spin labels, GdSL are subjected to an additional phase relaxation mechanism that features an increase in the relaxation rate from the center to the periphery of the EPR spectrum. Since the EPR spectrum of GdSL is the sum of subspectra of the individual EPR transitions, we attribute this field dependence to transition dependent phase relaxation. Using simulations of the EPR spectra and its decomposition into the individual transition subspectra, we isolated the phase relaxation of each transition and found that its rate increases with |ms|. We suggest that this mechanism is due to transient zero field splitting (tZFS), where its magnitude and correlation time are scaled down and distributed as compared with similar situations in liquids. This tZFS induced phase relaxation mechanism becomes dominant (or at least significant) when all other well-known phase relaxation mechanisms, such as spectral diffusion caused by nuclear spin diffusion, instantaneous and electron spin spectral diffusion, are significantly suppressed by matrix deuteration and low concentration, and when the temperature is sufficiently low to disable spin lattice interaction as a source of phase relaxation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4495766 | PMC |
http://dx.doi.org/10.1016/j.jmr.2014.09.012 | DOI Listing |
Complement Ther Clin Pract
January 2025
School of Psychology, Deakin University, Australia. Electronic address:
Purpose: This pilot study was the first of its kind to examine the experiences of people with persistent pain engaging in a six-week iRest for Pain group program as part of multidisciplinary pain care.
Method: The present study used a qualitative, phenomenological design and reflexive thematic analysis to gain an understanding of the firsthand experience of patients who participated in the iRest for Pain group program. This program was offered in a specialist outpatient pain management service within a regional public hospital in Victoria, Australia.
J Oral Rehabil
January 2025
Department of Rehabilitation Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan.
Introduction: Recent studies have shown that capsaicin improves the pharyngeal swallowing reflex. However, the mechanism by which capsaicin alters mastication and oesophageal function remains unclear. This study aimed to investigate the effects of capsaicin on masticatory and oesophageal function.
View Article and Find Full Text PDFNutrients
January 2025
Department of Obstetrics and Gynaecology, Semmelweis University, Üllői Street 78/a, 1082 Budapest, Hungary.
Background/objectives: Both hyperandrogenism (HA) and vitamin D deficiency (VDD) can separately lead to impaired vascular reactivity and ovulatory dysfunction in fertile females. The aim was to examine the early interactions of these states in a rat model of PCOS.
Methods: Four-week-old adolescent female rats were divided into four groups: vitamin D (VD)-supplemented ( = 12); VD-supplemented and testosterone-treated ( = 12); VDD- ( = 11) and VDD-and-testosterone-treated ( = 11).
Polymers (Basel)
January 2025
Rheology Department, Polymat Institute, University of the Basque Country, 20018 Donostia-San Sebastian, Euskadi, Spain.
This paper addresses the author's current understanding of the physics of interactions in polymers under a voltage field excitation. The effect of a voltage field coupled with temperature to induce space charges and dipolar activity in dielectric materials can be measured by very sensitive electrometers. The resulting characterization methods, thermally stimulated depolarization (TSD) and thermal-windowing deconvolution (TWD), provide a powerful way to study local and cooperative relaxations in the amorphous state of matter that are, arguably, essential to understanding the glass transition, molecular motions in the rubbery and molten states and even the processes leading to crystallization.
View Article and Find Full Text PDFMolecules
January 2025
Department of Engineering Science, The University of Electro-Communications, Chofu 182-8585, Tokyo, Japan.
A new compound [Y(sq)(HO)] (Y-sq; sq = squarate (CO)) was prepared and structurally characterized. Since the RE-sq family (RE = Y, Dy, Yb, Lu) gave isostructural crystals, the objective of this study is to explore the effects of diamagnetic dilution on the SIM behavior through systematic investigation and comparison of diamagnetically diluted and undiluted forms. The 1%-Diluted Dy compounds, Dy@Y-sq and Dy@Lu-sq, showed AC magnetic susceptibility peaks without any DC bias field (), whereas undiluted Dy-sq showed no AC out-of-phase response under the same conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!