Electrochemical synthesis of nanostructured gold film for the study of carbohydrate-lectin interactions using localized surface plasmon resonance spectroscopy.

Carbohydr Res

Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, MO 63121, United States; Center for Nanoscience, University of Missouri-St. Louis, One University Boulevard, St. Louis, MO 63121, United States. Electronic address:

Published: March 2015

Localized surface plasmon resonance (LSPR) spectroscopy is a label-free chemical and biological molecular sensing technique whose sensitivity depends upon development of nanostructured transducers. Herein, we report an electrodeposition method for fabricating nanostructured gold films (NGFs) that can be used as transducers in LSPR spectroscopy. The NGF was prepared by electrodepositing gold from potassium dicyanoaurate solution onto a flat gold surface using two sequential controlled potential steps. Imaging by scanning electron microscopy reveals a morphology consisting of randomly configured block-like nanostructures. The bulk refractive index sensitivity of the prepared NGF is 100±2 nmRIU(-1) and the initial peak in the reflectance spectrum is at 518±1 nm under N2(g). The figure of merit is 1.7. In addition, we have studied the interaction between carbohydrate (mannose) and lectin (Concanavalin A) on the NGF surface using LSPR spectroscopy by measuring the interaction of 8-mercaptooctyl-α-d-mannopyranoside (αMan-C8-SH) with Concanavalin A by first immobilizing αMan-C8-SH in mixed SAMs with 3,6-dioxa-8-mercaptooctanol (TEG-SH) on the NGF surface. The interaction of Con A with the mixed SAMs is confirmed using electrochemical impedance spectroscopy. Finally, the NGF surface was regenerated to its original sensitivity by removing the SAM and the bound biomolecules. The results from these experiments contribute toward the development of inexpensive LSPR based sensors that could be useful for studying glycan-protein interactions and other bioanalytical purposes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4355165PMC
http://dx.doi.org/10.1016/j.carres.2014.08.019DOI Listing

Publication Analysis

Top Keywords

lspr spectroscopy
12
ngf surface
12
nanostructured gold
8
localized surface
8
surface plasmon
8
plasmon resonance
8
mixed sams
8
surface
6
spectroscopy
5
ngf
5

Similar Publications

An optical biosensor is a specialized analytical device that utilizes the principles of optics and light in bimolecular processes. Localized surface plasmon resonance (LSPR) is a phenomenon in the realm of nanophotonics that occurs when metallic nanoparticles (NPs) or nanostructures interact with incident light. Conversely, surface-enhanced Raman spectroscopy (SERS) is an influential analytical technique based on Raman scattering, wherein it amplifies the Raman signals of molecules when they are situated near specific and specially designed nanostructures.

View Article and Find Full Text PDF

Hydrogel nanocomposites that respond to external stimuli and possess switchable electrical properties are considered as emerging materials with potential uses in electrical, electrochemical, and biological devices. This work reports the synthesis and characterization of thermo-responsive and electroconductive hydrogel nanocomposites based on poly(-isopropylacrylamide) (PNiPAAm) and gold nanoparticles (nanospheres-AuNPs and nanorods-AuNRs) using two different synthetic techniques. Method I involved γ-irradiation-induced crosslinking of a polymer matrix (hydrogel), followed by radiolytic formation of gold nanoparticles, while Method II included the chemical synthesis of nanoparticles, followed by radiolytic formation of a polymer matrix around the gold nanoparticles.

View Article and Find Full Text PDF

Due to their distinctive optical, electrical, and catalytic characteristics, gold nanoparticles (AuNPs) have found increasing use for a wide range of applications, including biomedicine and catalysis. Inherent agglomeration propensities impair their functional qualities, stability, and biocompatibility. This work investigates the potential applications of the cataractous eye protein isolate (CEPI), a waste product rich in proteins from cataract surgery, as a novel AuNP stabilizing agent.

View Article and Find Full Text PDF

Breast cancer poses a global threat with rising incidence and high mortality. Conventional treatments, including chemotherapy, radiation, surgery, and immunotherapy, have side effects, such as resistance issues and adverse effects due to genetic mutations. Meanwhile, noble metal nanoparticles (NPs) synthesized using environmentally friendly methods offer alternative treatments.

View Article and Find Full Text PDF
Article Synopsis
  • * The study develops a detection platform using Surface-enhanced Raman spectroscopy (SERS) with dual-metal nanomaterials that enhances sensitivity, allowing the quick and direct measurement of GSM with results in as little as 4 minutes.
  • * The new detection method is highly sensitive, with a detection limit of 0.16 ng/L for GSM, and shows great potential for real-time monitoring of earthy odors without the need for labels or biomaterials.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!