A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of alendronate on osteoclast formation and activity in vitro. | LitMetric

Effects of alendronate on osteoclast formation and activity in vitro.

J Endod

Department of Conservative/Preventive Dentistry and Periodontology, Hannover Medical School, Hannover, Germany. Electronic address:

Published: January 2015

Introduction: Root resorption is a common complication after replantation following traumatic dental avulsion. Endodontic therapy combined with local and intracanal medications aims to avoid osteoclastic activity. In such cases, the application of alendronate (ALN), a bisphosphonate widely used for the treatment of bone disorders, could be of clinical relevance. This study evaluated alendronate biocompatibility on periodontal ligament cells as well as its effects on an in vitro osteoclastogenesis model.

Methods: Alendronate cytotoxicity (10(-3) to 10(-9) mol/L) in human periodontal ligament fibroblasts, human osteogenic sarcoma cells, and murine osteoclastic precursors (RAW 264.7) was analyzed using cell number determination, cell viability, and proliferation assays. ALN (10(-6) to 10(-12) mol/L) effects on RANKL-induced osteoclastogenesis of RAW cells were assessed by tartrate-resistant acid phosphatase (TRAP) staining and activity and real-time polymerase chain reaction.

Results: ALN at higher concentrations was cytotoxic for all cell types, inhibiting significantly the proliferation of human osteogenic sarcoma cells and human periodontal ligament fibroblasts (≥10(-5) mol/L). TRAP activity and expression of the osteoclast markers TRAP and cathepsin K by RAW-derived osteoclasts decreased significantly with ALN at low concentrations, reaching the maximum effect at 10(-10) mol/L.

Conclusions: We showed that ALN at very low concentrations is an effective inhibitor of RANKL-generated osteoclasts, without causing cytotoxic effects on their precursors or periapical cells. ALN at such concentrations might be useful to prevent replacement resorption in avulsed teeth.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.joen.2014.07.010DOI Listing

Publication Analysis

Top Keywords

periodontal ligament
12
human periodontal
8
ligament fibroblasts
8
human osteogenic
8
osteogenic sarcoma
8
sarcoma cells
8
aln low
8
low concentrations
8
aln
6
cells
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!