Poly(ADP-ribosyl)ation is a ubiquitous protein modification involved in the regulation of many cellular processes that is carried out by the poly(ADP-ribose) polymerase (PARP) family. The PARP-1, PARP-2 and PARP-3 are the only PARPs known to be activated by DNA damage. The absence of PARP-1 and PARP-2, that are both activated by DNA damage and participate in DNA damage repair processes, results in hypersensitivity to ionizing radiation and alkylating agents. PARP inhibitors that compete with NAD(+) at the enzyme's activity site can be used in BRCA-deficient cells as single agent therapies acting through the principle of synthetic lethality exploiting these cells deficient DNA double-strand break repair. Preclinical data showing an enhancement of the response of tumors to radiation has been documented for several PARP inhibitors. However, whether this is due exclusively to impaired DNA damage responses or whether tumor re-oxygenation contributes to this radio-sensitization via the vasoactive effects of the PARP inhibitors remains to be fully determined. These promising results have paved the way for the evaluation of PARP inhibitors in combination with radiotherapy in phase I and phase II clinical trials for malignant glioma, head and neck, and breast cancers. A number of challenges remain that are also reviewed in this article, including the optimization of treatment schedules for combined therapies and the validation of biomarkers that will identify which patients will most benefit from either PARP inhibitors in combination with radiotherapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.canrad.2014.05.012 | DOI Listing |
J Med Chem
January 2025
Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease, Ministry of Education; Jiangxi Provincal Key Laboratory of Tissue Engineering; College of Pharmacy, Gannan Medical University, Ganzhou 314000, China.
Histone deacetylase 3 (HDAC3) is a well-established target for cancer therapy. Herein, we developed as a novel HDAC3 inhibitor, which exhibited high HDAC3 inhibitory activity (IC = 42 nM, SI > 161) and displayed potent antiproliferative activity against four cancer cells and further demonstrated excellent antimigratory, anti-invasive, and antiwound healing activities. Further studies revealed that induced a dose-dependent increase in Ac-H3 expression and promoted the degradation of PD-L1.
View Article and Find Full Text PDFIntegr Cancer Ther
January 2025
National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt.
Objectives: Hepatocellular carcinoma (HCC) represents the third-most prevalent cancer in humans worldwide. The current study's objective is to search for the potentiality of H. Wendl () leaf extract in a nanoemulsion (NE) form in enhancing radiotherapy against HCC induced in rats using diethylnitrosamine (DEN).
View Article and Find Full Text PDFJ Ginseng Res
January 2025
College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea.
DNA damage is a driver of cancer formation, leading to the impairment of repair mechanisms in cancer cells and rendering them susceptible to DNA-damaging therapeutic approaches. The concept of "synthetic lethality" in cancer clinics has emerged, particularly with the use of PARP inhibitors and the identification of DNA damage response (DDR) mutation biomarkers, emphasizing the significance of targeting DDR in cancer therapy. Novel approaches aimed at genome maintenance machinery are under development to further enhance the efficacy of cancer treatments.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
January 2025
Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL, USA.
Hepatic lipotoxicity, resulting from excessive lipid accumulation in hepatocytes, plays a central role in the pathogenesis of various metabolic liver diseases. Despite recent progress, the precise mechanisms remain incompletely understood. Employing excessive exposure to palmitate in hepatocytes as our primary experimental model and mice studies, we aimed to uncover the mechanisms behind hepatic lipotoxicity, thereby developing potential treatments.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
Division of Infection, Immunity and Respiratory Medicine, The University of Manchester, Manchester, UK
Background: Programmed cell death 1 (PD-1) signaling blockade by immune checkpoint inhibitors (ICI) effectively restores immune surveillance to treat melanoma. However, chronic interferon-gamma (IFNγ)-induced immune homeostatic responses in melanoma cells contribute to immune evasion and acquired resistance to ICI. Poly ADP ribosyl polymerase 14 (PARP14), an IFNγ-responsive gene product, partially mediates IFNγ-driven resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!