Electrophysiological studies employing amphibian neuromuscular preparations have shown that mercuric chloride (HgCl2) in vitro increases both spontaneous and evoked neurotransmitter release. The present study examines the effect of HgCl2 on the release of [3H]dopamine from synaptosomes prepared from mammalian brain tissue. Mercuric chloride (3-10 microM) produces a concentration-dependent increase in spontaneous [3H]dopamine release from "purified" rat striatal synaptosomes, in both the presence and absence of extra-synaptosomal calcium. The effects of HgCl2 on transmitter release from amphibian neuromuscular junction preparations resemble those produced by the Na+, K+-ATPase inhibitor ouabain. Experiments were performed to determine whether the HgCl2 effects on mammalian synaptosomal dopamine release are a consequence of Na+, K+-ATPase inhibition. Na+, K+-ATPase activity in lysed synaptosomal membranes is inhibited by HgCl2 (IC50 = 160 nM). However, mercuric chloride in the presence of 1 mM ouabain still increased [3H]dopamine release. The specific inhibitor of Na+-dependent, high-affinity dopamine transport, RMI81,182 inhibited ouabain-induced [3H]dopamine release whereas it had no effect on HgCl2-induced [3H]dopamine release. These data suggest that augmentation of spontaneous [3H]dopamine release by HgCl2 probably is not mediated by an inhibition of Na+, K+-ATPase and HgCl2 does not act directly on the dopamine transporter.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0041-008x(89)90009-4DOI Listing

Publication Analysis

Top Keywords

[3h]dopamine release
24
mercuric chloride
16
na+ k+-atpase
16
release
10
striatal synaptosomes
8
amphibian neuromuscular
8
spontaneous [3h]dopamine
8
inhibition na+
8
[3h]dopamine
7
hgcl2
7

Similar Publications

Striking Neurochemical and Behavioral Differences in the Mode of Action of Selegiline and Rasagiline.

Int J Mol Sci

August 2023

Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvarad ter 4, 1089 Budapest, Hungary.

Selegiline and rasagiline are two selective monoamine oxidase B (MAO-B) inhibitors used in the treatment of Parkinson's disease. In their clinical application, however, differences in L-dopa-sparing potencies have been observed. The aim of this study was to find neurochemical and behavioral explanations for the antiparkinsonian effects of these drugs.

View Article and Find Full Text PDF

Enhancer Regulation of Dopaminergic Neurochemical Transmission in the Striatum.

Int J Mol Sci

August 2022

Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvarad ter 4, 1089 Budapest, Hungary.

The trace amine-associated receptor 1 (TAAR1) is a Gs protein-coupled, intracellularly located metabotropic receptor. Trace and classic amines, amphetamines, act as agonists on TAAR1; they activate downstream signal transduction influencing neurotransmitter release via intracellular phosphorylation. Our aim was to check the effect of the catecholaminergic activity enhancer compound ((-)BPAP, ()-(-)-1-(benzofuran-2-yl)-2-propylaminopentane) on neurotransmitter release via the TAAR1 signaling.

View Article and Find Full Text PDF

The translationally controlled tumor protein (TCTP), initially identified as a tumor- and growth-related protein, is also known as a histamine-releasing factor (HRF). TCTP is widely distributed in the neuronal systems, but its function is largely uncharacterized. Here, we report a novel function of TCTP in the neurotransmitter release from a neurosecretory, pheochromocytoma (PC12) cells.

View Article and Find Full Text PDF

The regulation of the dopamine transporter (DAT) impacts extracellular dopamine levels after release from dopaminergic neurons. Furthermore, a variety of protein partners have been identified that can interact with and modulate DAT function. In this study we show that DJ-1 can potentially modulate DAT function.

View Article and Find Full Text PDF

Pyrido[3,4]homotropane (PHT) is a conformationally rigid, high affinity analogue of nicotine. (+)-PHT was previously shown to be 266 times more potent than (-)-PHT for inhibition of [(3)H]epibatidine binding to nAChRs but had no antinociceptive activity in mouse tail-flick or hot-plate tests and was not a nicotinic antagonist even when administered intrathecally. While (-)-PHT had no agonist activity, it was a potent, nicotinic antagonist in the test.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!