Enhanced field emission and photocatalytic performance of MoS₂ titania nanoheterojunctions via two synthetic approaches.

Dalton Trans

Key Laboratory of Polar Materials and Devices (Ministry of Education of China), Department of Electronic Engineering, East China Normal University, Shanghai, 200241, P. R. China.

Published: January 2015

Two types of molybdenum disulfide (MoS2) titania nanoheterojunctions with different morphologies were synthesized via two different approaches. They were facile and additive-free hydrothermal processes, which resulted in a high material productivity and controllable morphologies. Both the synthesis and their growth mechanisms are discussed in this paper. The field emission properties of MoS2 titania nanoheterojunctions were investigated in this research. The experimental data indicated that the MoS2@TiO2 heterojunctions had an excellent field emission performance with a turn-on field of 2.2 V μm(-1) and threshold field of 3.6 V μm(-1) on Si substrate because of the large quantities of sharp edges. Furthermore, because the p-n heterojunctions were formed, the photocatalytic activities of both composites were evaluated by monitoring the photodegradation of methylene blue. The results showed that the TiO2@MoS2 heterojunctions had better photocatalytic properties with 90% degradation within 100 minutes. The morphological differences generated from different synthetic approaches made a huge impact on the composites' properties.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4dt03035dDOI Listing

Publication Analysis

Top Keywords

field emission
12
titania nanoheterojunctions
12
synthetic approaches
8
mos2 titania
8
field μm-1
8
enhanced field
4
emission photocatalytic
4
photocatalytic performance
4
performance mos₂
4
mos₂ titania
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!