T-cell receptor sequencing reveals the clonal diversity and overlap of colonic effector and FOXP3+ T cells in ulcerative colitis.

Inflamm Bowel Dis

*Translational Research Program, Benaroya Research Institute at Virginia Mason, Seattle, WA; Departments of †Gastroenterology and ‡Surgery, Virginia Mason Medical Center, Seattle, WA; §Adaptive Biotechnologies, Seattle, WA; and ‖Public Helath Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA.

Published: January 2015

AI Article Synopsis

Article Abstract

Background: FOXP3 regulatory T cell prevent inflammation but are paradoxically increased in ulcerative colitis (UC). Local T-cell activation has been hypothesized to account for increased FOXP3 expression in colon lamina propria (LP) T cells.

Methods: To see if human FOXP3 LP T cells are an activated fraction of otherwise FOXP3 effector T cells and explore their clonal diversity in health and disease, we deep sequenced clonally unique T-cell receptor hypervariable regions of FOXP3 and FOXP3CD4 T-cell subpopulations from inflamed versus noninflamed colon LP or mesenteric lymph nodes of patients with or without UC.

Results: The clonal diversity of each LP T-cell population was not different between patients with versus without UC. Repertoire overlap was only seen between a minority of FOXP3 and FOXP3 cells, including recently activated CD38 cells and Th17-like CD161 effector T cells, but this repertoire overlap was not different between patients with versus without UC and was no larger than the overlap between Helios and Helios FOXP3 cells.

Conclusions: Thus, at steady state, only a minority of FOXP3, and particularly Helios, T cells share a T-cell receptor sequence with FOXP3 effector populations in the colon LP, even in UC, revealing distinct clonal origins for LP regulatory T cell and effector T cells in humans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4526221PMC
http://dx.doi.org/10.1097/MIB.0000000000000242DOI Listing

Publication Analysis

Top Keywords

t-cell receptor
12
clonal diversity
12
effector cells
12
foxp3
10
cells
8
ulcerative colitis
8
regulatory cell
8
foxp3 cells
8
foxp3 effector
8
patients versus
8

Similar Publications

Herpesvirus Infections After Chimeric Antigen Receptor T-Cell Therapy and Bispecific Antibodies: A Review.

Viruses

January 2025

Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.

In this narrative review, we explore the burden and risk factors of various herpesvirus infections in patients receiving chimeric antigen receptor T-cell (CAR-T) therapy or bispecific antibodies (BsAb) for the treatment of hematologic malignancies. Antiviral prophylaxis for herpes simplex/varicella zoster viruses became part of the standard of care in this patient population. Breakthrough infections may rarely occur, and the optimal duration of prophylaxis as well as the timing of recombinant zoster immunization remain to be explored.

View Article and Find Full Text PDF

Chronic low back pain (cLBP) lacks clear physiological explanations, and the treatment options are of limited effect. We aimed to elucidate the underlying biology of cLBP in a subgroup of patients with Modic changes type I (suggestive of inflammatory vertebral bone marrow lesions) by correlating gene expression in blood with patient-reported outcomes on disability and pain intensity and explore sex differences. Patients were included from the placebo group of a clinical study on patients with cLBP and Modic changes.

View Article and Find Full Text PDF

Systemic lupus erythematosus (SLE), systemic sclerosis (SSc), and idiopathic inflammatory myositis (IIM) are autoimmune diseases managed with long-term immunosuppressive therapies. Hu19-CD828Z, a fully human anti-CD19 chimeric antigen receptor (CAR) with a CD28 costimulatory domain, is engineered to potently deplete B-cells. In this study, we manufactured Hu19-CD828Z CAR T-cells from peripheral blood of SLE, IIM, and SSc patients and healthy donors (HDs).

View Article and Find Full Text PDF

Background/objectives: MDG1011 is an autologous TCR-T therapy developed as a treatment option for patients with myeloid malignancies, including acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), and multiple myeloma (MM). It is specific for the target antigen PReferentially expressed Antigen in MElanoma (PRAME). The recombinant TCR used in MDG1011 recognizes PRAME VLD-peptide presented by HLA-A*02:01-encoded surface molecules.

View Article and Find Full Text PDF

Mycosis fungoides (MF) is a rare malignancy, with an indolent course in the early stages of the disease. However, due to major molecular and clinical heterogeneity, patients at an advanced stage of the disease have variable responses to treatment and considerably reduced life expectancy. Today, there is a lack of specific markers for the progression from early to advanced stages of the disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!