Three Rate-Constant Kinetic Model for Permanganate Reactions Autocatalyzed by Colloidal Manganese Dioxide: The Oxidation of L-Phenylalanine.

J Phys Chem B

Departamento de Quimica Fisica, Facultad de Quimica, Universidad de Barcelona , Marti i Franques, 1, 08028 Barcelona, Spain.

Published: December 2014

AI Article Synopsis

  • The study examines the reduction of permanganate ion to a soluble colloidal mixed oxide using l-phenylalanine in neutral phosphate-buffered solutions, tracked through spectrophotometry.
  • It identifies that the reaction is autocatalyzed by manganese and requires three rate constants to accurately match the kinetic data observed over time.
  • The proposed mechanism highlights the stronger reducing ability of the anionic form of the amino acid, outlines the initial hydrogen transfer step in the nonautocatalytic pathway, and describes the dual role of Mn in both the reduction and reoxidation processes involved.

Article Abstract

The reduction of permanganate ion to MnO(2)-Mn(2)O(3) soluble colloidal mixed oxide by l-phenylalanine in aqueous phosphate-buffered neutral solutions has been followed by a spectrophotometric method, monitoring the decay of permanganate ion at 525 nm and the formation of the colloidal oxide at 420 nm. The reaction is autocatalyzed by the manganese product, and three rate constants have been required to fit the experimental absorbance-time kinetic data. The reaction shows base catalysis, and the values of the activation parameters at different pHs have been determined. A mechanism including both the nonautocatalytic and the autocatalytic reaction pathways, and in agreement with the available experimental data, has been proposed. Some key features of this mechanism are the following: (i) of the two predominant forms of the amino acid, the anionic form exhibits a stronger reducing power than the zwitterionic form; (ii) the nonautocatalytic reaction pathway starts with the transfer of the hydrogen atom in the α position of the amino acid to permanganate ion; and (iii) the autocatalytic reaction pathway involves the reduction of Mn(IV) to Mn(II) by the amino acid and the posterior reoxidation of Mn(II) to Mn(IV) by permanganate ion.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp5089564DOI Listing

Publication Analysis

Top Keywords

permanganate ion
16
amino acid
12
autocatalytic reaction
8
reaction pathway
8
permanganate
5
reaction
5
three rate-constant
4
rate-constant kinetic
4
kinetic model
4
model permanganate
4

Similar Publications

An economical luminescent film sensor for rapid detection of permanganate in water and Diquat in wheat, apple and Chinese cabbage.

Food Chem

March 2025

School of Chemistry and Chemical Engineering, Key Laboratory of Opto-Electronic Technology and Intelligent Control (Ministry of Education), Lanzhou Jiaotong University, Lanzhou 730070, China. Electronic address:

Developing portable devices with reliable and swift luminescent responses for the detection of anions and pesticide residues are extremely expected for the foods safety and sequently the public health. To reduce cost and simplify the preparation and detection process, a new highly luminescent lanthanide species, [TbL(NO)]·0.5CHCN (TbL) based on an amido-armed open chain crown ether (L) was prepared and well characterized for the assembly of hybrid film, TbL@PMMA.

View Article and Find Full Text PDF

Molecular Alterations of Algal Organic Matter in Oxidation Processes: Implications to the Formation of Disinfection Products.

ACS ES T Water

December 2024

Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, South Carolina 29625, United States.

Article Synopsis
  • Seasonal algal blooms pose a risk to drinking water quality, and oxidative treatment can effectively remove algal cells but releases algal organic matter (AOM) that can complicate water treatment.
  • Different oxidants (like chlorine and ozone) impact the molecular characteristics of AOM, with ozone causing the most significant changes in its composition.
  • The study highlights that while oxidative treatment can reduce harmful reactions during water disinfection, it may also lead to the formation of new byproducts, including some that could be more concerning for water safety.
View Article and Find Full Text PDF

The occurrence of excessive levels of bivalent plumbum (Pb(II)) in wastewater poses a notable threat to both human health and ecological safety. In this study, orthogonal experiments were conducted to prepare coprecipitation-modified biochar (C-BC) and impregnation pyrolysis-modified biochar (I-BC) via potassium permanganate (KMnO) for removing Pb(II) from wastewater. Three types of modified biochars (BCs) (Mn-BCs) namely, C-BC, I-BC, and I-BC, were selected as high-efficiency adsorbents on the basis of their high removal rates (87.

View Article and Find Full Text PDF

Degradation of 1,2,3-trichloropropane by ferrate(VI) oxidant: Mechanisms, influencing factors and oxidative iron species.

Sci Total Environ

January 2025

Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing 100095, China.

The ferrate(VI) ion is a green, versatile oxidant employed eliminate organic contaminants. Research on the degradation of saturated chlorinated hydrocarbons such as 1,2,3-trichloropropane (1,2,3-TCP), by Fe(VI) is limited. In this study, we investigated the degradation of 1,2,3-TCP by Fe(VI).

View Article and Find Full Text PDF

This study introduces a novel and environmentally friendly method for developing a cross-linked chitosan-Ocimum basilicum leaves-ZnO (ChOBLZnO) composite membrane, specifically designed for the adsorption of permanganate ions (MnO-) from wastewater. Various characterization techniques, including Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Brunauer-Emmett-Teller (BET) surface area analysis, were employed to confirm the membrane's synthesis quality, structural integrity, and surface properties crucial for adsorption. The BET analysis revealed a surface area of 228.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!