Regulation of PKM2 and Nrf2-ARE pathway during benzoquinone induced oxidative stress in yolk sac hematopoietic stem cells.

PLoS One

School of Public Health, Wuhan University, Wuhan, Hubei, P.R. China; Hubei Key Laboratory of Allergy and Immune-related Diseases, Wuhan, Hubei, P.R. China; Hubei Biomass-resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, Hubei, P.R. China.

Published: September 2015

Benzene is an occupational toxicant and an environmental pollutant that is able to induce the production of reactive oxygen species (ROS), causing oxidative stress and damages of the macromolecules in target cells, such as the hematopoietic stem cells. We had previously found that embryonic yolk sac hematopoietic stem cells (YS-HSCs) are more sensitive to benzene toxicity than the adult bone marrow hematopoietic stem cells, and that nuclear factor-erythroid-2-related factor 2 (Nrf2) is the major regulator of cytoprotective responses to oxidative stress. In the present report, we investigated the effect of PKM2 and Nrf2-ARE pathway on the cellular antioxidant response to oxidative stress induced by benzene metabolite benzoquinone (BQ) in YS-HSC isolated from embryonic yolk sac and enriched by magnetic-activated cell sorting (MACS). Treatment of the YS-HSC with various concentrations of BQ for 6 hours induces ROS generation in a dose-dependent manner. Additional tests showed that BQ is also capable of inducing expression of NADPH oxidase1 (NOX1), and several other antioxidant enzymes or drug-metabolizing enzymes, including heme oxygenase 1 (HMOX1), superoxide dismutase (SOD), catalase and NAD(P)H dehydrogenase quinone 1 (NQO1). Concomitantly, only the expression of PKM2 protein was decreased by the treatment of BQ but not the PKM2 mRNA, which suggested that BQ may induce PKM2 degradation. Pretreatment of the cells with antioxidant N-acetylcysteine (NAC) decreased ROS generation and prevented BQ-induced PKM2 degradation, suggesting involvement of ROS in the PKM2 protein degradation in cellular response to BQ. These findings suggest that BQ is a potent inducer of ROS generation and the subsequent antioxidant responses of the YS-HSC. The accumulated ROS may attenuate the expression of PKM2, a key regulator of the pyruvate metabolism and glycolysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4250037PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0113733PLOS

Publication Analysis

Top Keywords

oxidative stress
16
hematopoietic stem
16
stem cells
16
yolk sac
12
ros generation
12
pkm2 nrf2-are
8
nrf2-are pathway
8
sac hematopoietic
8
embryonic yolk
8
expression pkm2
8

Similar Publications

Exposure to vanadium (V) occurs through the ingestion of contaminated water, polluted soil, V-containing foods and medications, and the toxicity and absorption during the small intestine phase after oral ingestion play crucial roles in the ultimate health hazards posed by V. In this study, the human colon adenocarcinoma (Caco-2) cells were selected as an intestinal absorption model to investigate the uptake and cytotoxicity of vanadyl sulfate (VOSO) and sodium orthovanadate (NaVO). Our results confirmed the cytotoxic effects of V(IV) and V(V) and revealed a greater toxicity of V(IV) than V(V) towards Caco-2 cells.

View Article and Find Full Text PDF

Puerarin pretreatment provides protection against myocardial ischemia/reperfusion injury via inhibiting excessive autophagy and apoptosis by modulation of HES1.

Sci Rep

January 2025

Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Road, Nanchang, 330006, Jiangxi, China.

The study aimed to elucidate the underlying pharmacological mechanism of the traditional Chinese medicine Pue in ameliorating myocardial ischemia-reperfusion injury (MIRI), a critical clinical challenge exacerbated by reperfusion therapy. In vivo MIRI and in vitro anoxia/reoxygenation (A/R) models were constructed. The results demonstrated that Pue pretreatment effectively alleviated MIRI, as manifested by diminishing the levels of serum CK-MB and LDH, mitigating the extent of myocardial infarction and enhancing cardiac functionality.

View Article and Find Full Text PDF

Loss-of-function mutations in PARK7, encoding for DJ-1, can lead to early onset Parkinson's disease (PD). In mice, Park7 deletion leads to dopaminergic deficits during aging, and increased sensitivity to oxidative stress. However, the severity of the reported phenotypes varies.

View Article and Find Full Text PDF

Nuclear speckles are membraneless organelles that associate with active transcription sites and participate in post-transcriptional mRNA processing. During the cell cycle, nuclear speckles dissolve following phosphorylation of their protein components. Here, we identify the PP1 family as the phosphatases that counteract kinase-mediated dissolution.

View Article and Find Full Text PDF

Electroacupuncture attenuates ferroptosis by promoting Nrf2 nuclear translocation and activating Nrf2/SLC7A11/GPX4 pathway in ischemic stroke.

Chin Med

January 2025

Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China.

Objective: Electroacupuncture has been shown to play a neuroprotective role following ischemic stroke, but the underlying mechanism remains poorly understood. Ferroptosis has been shown to play a key role in the injury process. In the present study, we wanted to explore whether electroacupuncture could inhibit ferroptosis by promoting nuclear factor erythroid-2-related factor 2 (Nrf2) nuclear translocation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!