Accurate measurement of inter-peptide interactions is beneficial for in-depth understanding disease-related protein folding and peptide aggregation, and further for designing and selecting potential peptide drugs to the target antigen. Herein, we demonstrate a 3D polyrotaxane (PRX) surface for detecting peptides interactions by surface plasmon resonance imaging (SPRi). This surface is supramolecular self-assembly monolayer (SAM) structure fabricated by threading α-cyclodextrans (α-CD) through a linear polyethylene glycol (PEG) chain fixed on gold chip surface to form pseudopolyrotaxane, and further capping the pseudopolyrotaxane with bulky terminated group to form PRX film. The hydroxyl groups of α-CD can provide more active sites to increase molecules immobilization density, and PEG chain has unique protein non-fouling feature. We chose Alzheimer's disease marker β-amyloid 40 (Aβ40) as model peptide, and detected the interaction between it and its inhibitors KLVFFK6 by SPRi. As a striking result, the specific adsorption of KLVFFK6 solution at the concentration of 352μM on Aβ40-PRX was 700RU, whereas PEG SAM surface gave no significant binding. Interaction between other lower molecular weight peptides was detected via PRX surface, and the relatively weak interactions (KD=1.73×10(-4)M) between LPFFD (Mw=0.6kDa) and amylin20-29 (Mw=1.0kDa) are successfully detected.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2014.11.025 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!