The 3' untranslated region (UTR)-associated RNAs (uaRNAs) have important roles in various biological processes, especially in development. However, since they overlap with protein-coding mRNAs, uaRNAs are difficult to study by RNA interference techniques. We recently identified a chemical molecule, 3-benzyl-5-((2-nitrophenoxy) methyl)-dihydrofuran-2(3H)-one (3BDO), that could efficiently induce human embryonic stem cells (hESCs) differentiation, and meanwhile selectively and efficiently downregulate the uaRNA FLJ11812. By acting as a competing endogenous RNA, downregulated FLJ11812 by 3BDO further increased miR-4459 level in hESCs. miR-4459 could decrease the expression of its targets, CDC20B and ATG13, and thus altered stemness via cell cycle and autophagy. Our results revealed that FLJ11812 played a key role in maintenance of stemness of hESCs for the first time. The findings provide new clues and a powerful tool for investigating the action mechanism of FLJ11812 in early development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4403228 | PMC |
http://dx.doi.org/10.1089/scd.2014.0353 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!