Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To increase colonoscopy capability to discriminate benign from malignant polyps, we suggest combining two imaging approaches based on targeted polymeric platforms. Water-soluble cationized polyacrylamide (CPAA) was tagged with the near infrared (NIR) dye IR-783-S-Ph-COOH to form Flu-CPAA. The recognition peptide VRPMPLQ (reported to bind specifically to CRC tissues) was then conjugated with the Flu-CPAA to form Flu-CPAA-Pep which was then incorporated into echogenic microbubbles (MBs) made of polylactic acid (PLA) that are highly responsive to ultrasound. The ultimate design includes intravenous administration combined with local ultrasound and intra-colon inspection at the NIR range. In this proof of principle study PLA MBs were prepared by the double emulsion technique and loaded with several types of Flu-CPAA-Pep polymers. After insonation the submicron PLA fragments (SPF)-containing Flu-CPAA-Pep were examined in vitro for their ability to attach to colon cancer cells and in vivo (DMH induced rat model) for their ability to attach to colon malignant tissues and compared to the specific attachment of the free Flu-CPAA-Pep. The generation of SPF-containing Flu-CPAA-Pep resulted in a tissue attachment similar to that of the free, unloaded Flu-CPAA-Pep. The addition of VRPMPLQ to the polymeric backbone of the Flu-CPAA reduced cytotoxicity and improved the specific binding.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2014.11.066 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!