Residue profiles of brodifacoum in coastal marine species following an island rodent eradication.

Ecotoxicol Environ Saf

Department of Conservation, Stewart Island Field Centre, PO Box 3, Stewart Island, New Zealand.

Published: March 2015

The second-generation anticoagulant rodenticide brodifacoum is an effective tool for the eradication of invasive rodents from islands and fenced sanctuaries, for biodiversity restoration. However, broadcast application of brodifacoum bait on islands may expose non-target wildlife in coastal marine environments to brodifacoum, with subsequent secondary exposure risk for humans if such marine wildlife is harvested for consumption. We report a case study of monitoring selected marine species following aerial application of brodifacoum bait in August 2011 to eradicate Norway rats (Rattus norvegicus) from Ulva Island, New Zealand. Residual concentrations of brodifacoum were detected in 3 of 10 species of coastal fish or shellfish sampled 43-176d after bait application commenced. Residual brodifacoum concentrations were found in liver, but not muscle tissue, of 2 of 24 samples of blue cod (0.026 and 0.092 µg/g; Parapercis colias) captured live then euthanized for tissue sampling. Residual brodifacoum concentrations were also found in whole-body samples of 4 of 24 mussels (range=0.001-0.022 µg/g, n=4; Mytilus edulis) and 4 of 24 limpets (range=0.001-0.016 µg/g, n=4; Cellana ornata). Measured residue concentrations in all three species were assessed as unlikely to have eventually caused mortality of the sampled individuals. We also conducted a literature review and determined that in eleven previous accounts of residue examination of coastal marine species following aerial applications of brodifacoum bait, including our results from Ulva Island, the overall rate of residue detection was 5.6% for marine invertebrates (11 of 196 samples tested) and 3.1% for fish (2 of 65 samples tested). Furthermore, our results from Ulva Island are the first known detection of brodifacoum residue in fish liver following an aerial application of brodifacoum bait. Although our findings confirm the potential for coastal marine wildlife to be exposed to brodifacoum following island rodent eradications using aerial bait application, the risk of mortality to exposed individual fish or shellfish appears very low. There is also a very low risk of adverse effects on humans that consume fish or shellfish containing residual concentrations in the ranges reported here. Furthermore, any brodifacoum residues that occur in marine wildlife decline to below detectable concentrations over a period of weeks. Thus potential human exposure to brodifacoum through consumption of marine wildlife containing residual brodifacoum could be minimized by defining 'no take' periods for harvest following bait application and regular monitoring to confirm the absence of detectable residues in relevant marine wildlife.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2014.11.013DOI Listing

Publication Analysis

Top Keywords

marine wildlife
20
coastal marine
16
brodifacoum bait
16
brodifacoum
15
marine species
12
application brodifacoum
12
ulva island
12
fish shellfish
12
bait application
12
residual brodifacoum
12

Similar Publications

Wood density is a critical control on tree biomass, so poor understanding of its spatial variation can lead to large and systematic errors in forest biomass estimates and carbon maps. The need to understand how and why wood density varies is especially critical in tropical America where forests have exceptional species diversity and spatial turnover in composition. As tree identity and forest composition are challenging to estimate remotely, ground surveys are essential to know the wood density of trees, whether measured directly or inferred from their identity.

View Article and Find Full Text PDF

This study examined the abundance, composition, sources, and pollution status of marine macro litter (>2.5 cm) at four beaches in Sri Lanka (Kallady, Negombo, Kandakuliya, and Balapitiya), located along the coastline of the northern Indian Ocean. Clean Coast Index (CCI), Plastic Abundance Index (PAI), Hazardous Item Index (HII), and Environmental Status Index (ESI) were used to evaluate the pollution levels.

View Article and Find Full Text PDF

Variability in predator-prey interactions can modulate population dynamics with impacts scalable to entire ecosystems. As notorious corallivores, crown-of-thorns sea stars (CoTS; spp.) have caused extensive losses of coral habitat during unexplained population outbreaks across the Indo-Pacific.

View Article and Find Full Text PDF

A Review of Hawaii and Plastic Pollution: Potential Innovations within Circular Economy?

Environ Manage

March 2025

Researcher, Department of Construction Engineering, École de Technologie Supérieure, Montreal, QC, Canada.

The study presents a comprehensive literature review focused on the impacts of plastic pollution within the Hawaiian ocean ecosystem. The analysis is organized into three primary sections to facilitate a structured understanding of the issue. First, the research identifies and categorizes the various types of plastics that contribute to pollution in the marine environment.

View Article and Find Full Text PDF

Harmful Cyanobacterial Blooms (HCBs) threaten ecological and human health, and their incidence and magnitude appear to be rising globally. However, a lack of guidance exists on how to choose the best HCB control and mitigation strategy for different types of water bodies. The portfolio of available in situ control techniques is diverse, ranging from experimental to well established, with complicated and poorly-documented records of effectiveness across different settings and a range of unintended ecological consequences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!