Division I Hockey Players Generate More Power Than Division III Players During on- and Off-Ice Performance Tests.

J Strength Cond Res

1School of Kinesiology, University of Minnesota, Minneapolis, Minnesota; and 2Department of Kinesiology and Public Health Education, University of North Dakota, Grand Forks, North Dakota.

Published: May 2015

Current research has found anthropometric and physiological characteristics of hockey players that are correlated to performance. These characteristics, however, have never been examined to see whether significant differences exist between on- and off-ice performance markers at different levels of play; Division I, Elite Junior, and Division III. The purpose of this study was to examine the differences that may exist between these characteristics in Division I (24), Elite Junior (10), and Division III hockey (11) players. Forty-five (age: 18-24 years) hockey players completed anthropometric, on-ice, and off-ice tests to ascertain average measures for each division of play. On-ice testing was conducted in full hockey gear and consisted of acceleration, top-speed, and on-ice repeated shift test (RST). Off-ice tests included vertical jump, Wingate, grip strength, and a graded exercise test performed on a skating treadmill to ascertain their (Equation is included in full-text article.). Division I players had significantly lower body fat than their Division III peers (p = 0.004). Division I players also scored significantly better on measures of anaerobic power; vertical jump (p = 0.001), Wingate peak power (p = 0.05), grip strength (p = 0.008), top speed (p = 0.001), and fastest RST course time (p = 0.001) than their Division III counterparts. There was no significant difference between Division I and Elite Junior players for any on- or off-ice performance variable. The results of this study indicate that performance differences between Division I and Division III hockey players seem to be primarily because of the rate of force production.

Download full-text PDF

Source
http://dx.doi.org/10.1519/JSC.0000000000000754DOI Listing

Publication Analysis

Top Keywords

division iii
24
hockey players
20
division
14
on- off-ice
12
off-ice performance
12
division elite
12
elite junior
12
players
9
players on-
8
differences exist
8

Similar Publications

Identification of an ANCA-associated vasculitis cohort using deep learning and electronic health records.

Int J Med Inform

January 2025

Rheumatology and Allergy Clinical Epidemiology Research Center and Division of Rheumatology, Allergy, and Immunology, and Mongan Institute, Department of Medicine, Massachusetts General Hospital Boston MA USA. Electronic address:

Background: ANCA-associated vasculitis (AAV) is a rare but serious disease. Traditional case-identification methods using claims data can be time-intensive and may miss important subgroups. We hypothesized that a deep learning model analyzing electronic health records (EHR) can more accurately identify AAV cases.

View Article and Find Full Text PDF

Background: Classic congenital adrenal hyperplasia, primarily due to 21-hydroxylase deficiency, leads to impaired cortisol and aldosterone production and excess adrenal androgens. Lifelong glucocorticoid therapy is required, often necessitating supraphysiological doses in youth to manage androgen excess and growth acceleration. These patients experience higher obesity rates, hypertension, and glucose metabolism issues, complicating long-term health management.

View Article and Find Full Text PDF

Purpose: To evaluate the effect of osilodrostat and hypercortisolism control on blood pressure (BP) and glycemic control in patients with Cushing's disease.

Methods: Pooled analysis of two Phase III osilodrostat studies (LINC 3 and LINC 4), both comprising a 48-week core phase and an optional open-label extension. Changes from baseline in systolic and diastolic BP (SBP and DBP), fasting plasma glucose (FPG), and glycated hemoglobin (HbA) were evaluated during osilodrostat treatment in patients with/without hypertension or diabetes at baseline.

View Article and Find Full Text PDF

Chronic lymphocytic leukemia is a malignant lymphoproliferative disorder for which primary or acquired drug resistance represents a major challenge. To investigate the underlying molecular mechanisms, we generate a mouse model of ibrutinib resistance, in which, after initial treatment response, relapse under therapy occurrs with an aggressive outgrowth of malignant cells, resembling observations in patients. A comparative analysis of exome, transcriptome and proteome of sorted leukemic murine cells during treatment and after relapse suggests alterations in the proteasome activity as a driver of ibrutinib resistance.

View Article and Find Full Text PDF

Background: The benefit of mechanical circulatory support (MCS) with Impella (Abiomed, Inc, Danvers, MA) for patients undergoing non-emergent, high-risk percutaneous coronary intervention (HR-PCI) is unclear and currently the subject of a large randomized clinical trial (RCT), PROTECT IV. While contemporary registry data from PROTECT III demonstrated improvement of outcomes with Impella when compared with historical data (PROTECT II), there is lack of direct comparison to the HR-PCI cohort that did not receive Impella support.

Methods: We retrospectively identified patients from our institution meeting PROTECT III inclusion criteria (left ventricular ejection fraction [LVEF] <35% with unprotected left main or last remaining vessel or LVEF <30% undergoing multivessel PCI), and compared this group (NonIMP) to the published outcomes data from the PROTECT III registry (IMP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!