Increased infestation of weedy rice-a noxious agricultural pest has caused significant reduction of grain yield of cultivated rice (Oryza sativa) worldwide. Knowledge on genetic diversity and structure of weedy rice populations will facilitate the design of effective methods to control this weed by tracing its origins and dispersal patterns in a given region. To generate such knowledge, we studied genetic diversity and structure of 21 weedy rice populations from Sri Lanka based on 23 selected microsatellite (SSR) loci. Results indicated an exceptionally high level of within-population genetic diversity (He = 0.62) and limited among-population differentiation (Fst = 0.17) for this predominantly self-pollinating weed. UPGMA analysis showed a loose genetic affinity of the weedy rice populations in relation to their geographical locations, and no obvious genetic structure among populations across the country. This phenomenon was associated with the considerable amount of gene flow between populations. Limited admixture from STRUCTURE analyses suggested a very low level of hybridization (pollen-mediated gene flow) between populations. The abundant within-population genetic diversity coupled with limited population genetic structure and differentiation is likely caused by the considerable seed-mediated gene flow of weedy rice along with the long-distance exchange of farmer-saved rice seeds between weedy-rice contaminated regions in Sri Lanka. In addition to other effective weed management strategies, promoting the application of certified rice seeds with no weedy rice contamination should be the immediate action to significantly reduce the proliferation and infestation of this weed in rice ecosystems in countries with similar rice farming styles as in Sri Lanka.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4249867 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0112778 | PLOS |
Front Plant Sci
December 2024
Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China.
In order to improve both resistance to lepidopteran pests and resistance to the herbicide imazethapyr in mainstay varieties of the Huang-Huai rice region, Sanming dominant genic male sterile (S-DGMS) rice was used as a platform to facilitate the pyramiding of functional genes and the replacement of the genomic background. Twelve novel lines were developed, each carrying a crystal toxin gene conferring resistance to lepidopteran pests and the allele conferring resistance to herbicide imazethapyr in the background of a mainstay variety. The genomic background of the 12 novel lines was examined using 48 specified molecular markers, and each line carried less than two polymorphic markers relative to the corresponding mainstay variety.
View Article and Find Full Text PDFSci Rep
December 2024
College of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China.
To explore the internal factors related to the strong growth and competitive ability of weedy rice during the seedling period, we collected two biotypes of Japonica weedy rice from Northeast China, four biotypes of Indica weedy rice from Eastern China and Southern China, and two biotypes of cultivated rice, Zhendao-8 (ZD-8) and Shanyou-63 (SY-63), which were used as controls in a pot experiment. Under homogeneous garden planting conditions, we measured the vascular bundle size (VBS), vascular bundle number (VBN), leaf thickness (LT), air cavity size (ACS), stomatal size (SS), stomatal density (SD), net photosynthetic rate (Pn) and stomatal conductance (Gs) of the weedy and cultivated rice biotypes. A comprehensive analysis was performed to explore the correlation between the seedling leaf structure and the photosynthetic indices of the biotypes.
View Article and Find Full Text PDFMol Ecol
December 2024
Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA.
-cinnamoyltyramine (NTCT) has been identified from an allelopathic Vietnamese rice accession OM 5930. This study employed bioassays to analyze NTCT's effects on shoot and root growth of multiple test and weed species. NTCT demonstrated potent inhibitory effects on cress, lettuce, canola, palmer amaranth, timothy, barnyardgrass, red sprangletop, and weedy rice, with increasing concentrations leading to substantial reductions in growth in all species.
View Article and Find Full Text PDFBiology (Basel)
September 2024
Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Ecology and Evolutionary Biology, Fudan University, Songhu Road 2005, Shanghai 200438, China.
Lignin is a key metabolite for terrestrial plants. Two types of aromatic amino acids, phenylalanine (Phe) and tyrosine (Tyr), serve as the precursors for lignin biosynthesis. In most plant species, Phe is deaminated by Phe ammonia-lyase (PAL) to initiate lignin biosynthesis, but in grass species, Phe and Tyr are deaminated by Phe/Tyr ammonia-lyase (PTAL).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!