Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Molecular chaperones are commonly identified by their ability to suppress heat-induced protein aggregation. The muscle-specific molecular chaperone UNC-45B is known to be involved in myosin folding and is trafficked to the sarcomeres A-band during thermal stress. Here, we identify temperature-dependent structural changes in the UCS chaperone domain of UNC-45B that occur within a physiologically relevant heat-shock range. We show that distinct changes to the armadillo repeat protein topology result in exposure of hydrophobic patches, and increased flexibility of the molecule. These rearrangements suggest the existence of a novel thermosensor within the chaperone domain of UNC-45B. We propose that these changes may function to suppress aggregation under stress by allowing binding to a wide variety of aggregation prone loops on its client.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.febslet.2014.11.034 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!