Cold-active enzymes are valuable catalysts showing high activity at low and moderate temperatures and low thermostability. Among cold-active enzymes, lipases offer a great potential in detergent, cosmetic, biofuel and food or feed industries. In this paper we describe the identification of novel lipase coding genes and the expression of a lipase with high activity at low temperatures. The genomic DNA from Antarctic seawater bacteria showing lipolytic activity at 4°C was used to amplify five DNA fragments that partially encode novel lipases using specifically designed COnsensus-DEgenerate Hybrid Oligonucleotide Primers (CODEHOP). All the fragments were found to have a high identity with an α/β-hydrolase domain-containing protein identified by the sequencing of the complete genome of Shewanella frigidimarina NCIMB 400. The complete sequence of one of the lipase-coding gene fragments, lipE13, was obtained by genome walking. Considering that the other fragments had a high identity to the putative lipase from S. frigidimarina NCIMB 400, the complete lipase genes were amplified using oligonucleotide primers designed based on the 5' and 3' regions of the coding sequence of the related protein. This strategy allowed the amplification of 3 lipase-encoding genes of which one was expressed in the periplasm using the Escherichia coli BL21(DE3)/pET-22b(+) expression system. The recombinant protein was obtained with activity toward p-nitrophenyl caproate showing a high specific activity between 15 and 25°C.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.enzmictec.2014.10.004 | DOI Listing |
Environ Microbiol
January 2025
Faculty of Biology, Technion, Israel Institute of Technology, Haifa, Israel.
Cyanobacterial distributions are shaped by abiotic factors including temperature, light and nutrient availability as well as biotic factors such as grazing and viral infection. In this study, we investigated the abundances of T4-like and T7-like cyanophages and the extent of picocyanobacterial infection in the cold, high-nutrient-low-chlorophyll, sub-Antarctic waters of the southwest Pacific Ocean during austral spring. Synechococcus was the dominant picocyanobacterium, ranging from 4.
View Article and Find Full Text PDFPLoS One
January 2025
Institute for Marine and Antarctic Studies, The University of Tasmania, Australia.
Marine protected areas (MPAs) are an important tool in helping to protect biodiversity in the oceans. Recent ratification of the Kunming-Montreal Global Biodiversity Framework (GBF) has ensured that globally we are committed to effectively protecting 30% of the world's oceans by 2030, in MPAs. In Australia there is considerable interest in the potential benefits that partially protected areas (PPAs) may provide.
View Article and Find Full Text PDFSci Rep
December 2024
British Antarctic Survey, High Cross, Madingley Road, Cambridge, UK.
Marine microplastic is pervasive, polluting the remotest ecosystems including the Southern Ocean. Since this region is already undergoing climatic changes, the additional stress of microplastic pollution on the ecosystem should not be considered in isolation. We identify potential hotspot areas of ecological impact from a spatial overlap analysis of multiple data sets to understand where marine biota are likely to interact with local microplastic emissions (from ship traffic and human populations associated with scientific research and tourism).
View Article and Find Full Text PDFChemosphere
January 2025
Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, 08034, Barcelona, Spain. Electronic address:
The assessment of persistence of organic pollutants in seawater is limited by the lack of user-friendly, quick protocols for assessing one of their main sinks, degradation by marine bacteria. Here we present an experimental workflow to identify organic pollutants degradation, taking organophosphate esters flame retardants and plasticizers (OPEs-FR-PL), as a model family of synthetic chemicals released into the marine environment that are particularly widespread due to their persistence and semi-volatile nature. The proposed novel workflow combines culture-dependent techniques, solvent demulsification-dispersive liquid-liquid microextraction, with quantitative liquid chromatography coupled with mass spectrometry analyses in order to identify marine bacterial isolates with the potential to degrade OPEs-FR-PL in the marine environment.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
GEOMAR, Helmholtz Centre for Ocean Research Kiel, Kiel 24105, Germany.
The metabolism of phytoplankton cells is synchronized with the diel light cycle. Likewise, associated heterotrophic bacteria adjust their diel expression of transporter- and catabolism-related genes to target the dissolved organic matter released by the phytoplankton cell. Dissolved combined carbohydrates (DCCHO) and dissolved amino acids (DAA) are major phytoplankton products and bacterial substrates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!