Medullary thyroid carcinoma (MTC) is a neuroendocrine tumor mainly caused by mutations in the rearranged during transfection (RET) proto-oncogene. For therapy of advanced MTC, the Food and Drug Administration recently approved vandetanib and cabozantinib, the tyrosine kinase inhibitors targeting RET, vascular endothelial growth factor receptor, epidermal growth factor receptor and/or c-MET. Nevertheless, not all patients respond to these drugs, demanding additional therapeutic strategies. We found that mortalin (HSPA9/GRP75), a member of HSP70 family, is upregulated in human MTC tissues and that its depletion robustly induces cell death and growth arrest in MTC cell lines in culture and in mouse xenografts. These effects were accompanied by substantial downregulation of RET, induction of the tumor-suppressor TP53 and altered expression of cell cycle regulatory machinery and apoptosis markers, including E2F-1, p21(CIP1), p27(KIP1) and Bcl-2 family proteins. Our investigation of the molecular mechanisms underlying these effects revealed that mortalin depletion induces transient MEK/ERK (extracellular signal-regulated kinase) activation and altered mitochondrial bioenergetics in MTC cells, as indicated by depolarized mitochondrial membrane, decreased oxygen consumption and extracellular acidification and increased oxidative stress. Intriguingly, mortalin depletion induced growth arrest partly via the MEK/ERK pathway, whereas it induced cell death by causing mitochondrial dysfunction in a Bcl-2-dependent manner. However, TP53 was not necessary for these effects except for p21(CIP1) induction. Moreover, mortalin depletion downregulated RET expression independently of MEK/ERK and TP53. These data demonstrate that mortalin is a key regulator of multiple signaling and metabolic pathways pivotal to MTC cell survival and proliferation, proposing mortalin as a novel therapeutic target for MTC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4451452 | PMC |
http://dx.doi.org/10.1038/onc.2014.392 | DOI Listing |
Cancers (Basel)
November 2024
Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242-1181, USA.
Oncogene
July 2024
Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
Mortalin (encoded by HSPA9) is a mitochondrial chaperone often overexpressed in cancer through as-yet-unknown mechanisms. By searching different RNA-sequencing datasets, we found that ESRRA is a transcription factor highly correlated with HSPA9 in thyroid cancer, especially in follicular, but not C cell-originated, tumors. Consistent with this correlation, ESRRA depletion decreased mortalin expression only in follicular thyroid tumor cells.
View Article and Find Full Text PDFFuture Med Chem
November 2023
Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015, India.
Functional inactivation of wild-type p53 is a major trait of cancerous cells. In many cases, such inactivation occurs by either gene mutations or due to overexpression of p53 binding partners. This review focuses on an overexpressed p53 binding partner called mortalin, a mitochondrial heat shock protein that sequesters both wild-type and mutant p53 in malignant cells due to changes in subcellular localization.
View Article and Find Full Text PDFMol Brain
May 2023
Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41566, Republic of Korea.
The primary cilium, an antenna-like structure on the cell surface, acts as a mechanical and chemical sensory organelle. Primary cilia play critical roles in sensing the extracellular environment to coordinate various developmental and homeostatic signaling pathways. Here, we showed that the depletion of heat shock protein family A member 9 (HSPA9)/mortalin stimulates primary ciliogenesis in SH-SY5Y cells.
View Article and Find Full Text PDFCancer Lett
July 2022
Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China. Electronic address:
Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin's lymphoma, with the combination of rituximab and chemotherapy being the standard treatment for it. Although rituximab monotherapy has a remarkable response rate, drug resistance with unclear mechanisms and lack of effective second-line therapy limit the survival benefits of patients with lymphoma. Here, we report that MORTALIN is highly expressed and correlates with resistance to rituximab-based therapy and poor survival in patients with DLBCL.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!