The marine cyanobacterium Prochlorococcus is the smallest and most abundant photosynthetic organism on Earth. In this Review, we summarize our understanding of the diversity of this remarkable phototroph and describe its role in ocean ecosystems. We discuss the importance of interactions of Prochlorococcus with the physical environment, with phages and with heterotrophs in shaping the ecology and evolution of this group. In light of recent studies, we have come to view Prochlorococcus as a 'federation' of diverse cells that sustains its broad distribution, stability and abundance in the oceans via extensive genomic and phenotypic diversity. Thus, it is proving to be a useful model system for elucidating the forces that shape microbial populations and ecosystems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nrmicro3378 | DOI Listing |
ISME J
December 2024
Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States.
As a result of human activity, Earth's atmosphere and climate are changing at an unprecedented pace. Models based on short-term experiments predict major changes will occur in marine phytoplankton communities in the future ocean, but rarely consider how evolution or interactions with other microbes may influence these changes. Here we experimentally evolved several phytoplankton in co-culture with a heterotrophic bacterium, Alteromonas sp.
View Article and Find Full Text PDFCommun Biol
December 2024
Department of Computer Science, Kent State University, 800 E Summit St, Kent, OH, 44242, USA.
Recent years have witnessed the remarkable progress of deep learning within the realm of scientific disciplines, yielding a wealth of promising outcomes. A prominent challenge within this domain has been the task of predicting enzyme function, a complex problem that has seen the development of numerous computational methods, particularly those rooted in deep learning techniques. However, the majority of these methods have primarily focused on either amino acid sequence data or protein structure data, neglecting the potential synergy of combining both modalities.
View Article and Find Full Text PDFTrends Microbiol
December 2024
Department of Biology, Portland State University, PO Box 751, Portland, OR 97201, USA. Electronic address:
The Earth's most abundant photosynthetic cells, the picocyanobacteria - Prochlorococcus and Synechococcus - play a fundamental global role in aquatic ecosystems. The success of these picocyanobacteria is interpreted through a cross-scale systems framework that integrates bottom-up controls on growth (e.g.
View Article and Find Full Text PDFISME Commun
January 2024
Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
Environ Pollut
November 2024
State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan, 430074, China; Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, 300457, China; Institute of Advanced Marine Research of Geosciences, Guangzhou, Guangdong, China. Electronic address:
Marine phytoplankton stands as one of the most crucial components of marine ecosystems, so tracking it using appropriate biomarkers holds significant meaning. Chlorins are a sort of degradation products derived from the diagnostic pigment of marine phytoplankton and serve as valuable biomarkers for describing the temporal and spatial distribution of phytoplankton. However, previous research has not qualitatively or quantitatively studied multiple Chlorins, nor has it clearly revealed the conditions of their formation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!