III-V nanowire synthesis by use of electrodeposited gold particles.

Nano Lett

Division of Solid State Physics/Nanometer Structure Consortium, Lund University, Box 118, SE-221 00, Lund, Sweden.

Published: January 2015

Semiconductor nanowires are great candidates for building novel electronic devices. Considering the cost of fabricating such devices, substrate reuse and gold consumption are the main concerns. Here we report on implementation of high throughput gold electrodeposition for selective deposition of metal seed particles in arrays defined by lithography for nanowire synthesis. By use of this method, a reduction in gold consumption by a factor of at least 300 was achieved, as compared to conventional thermal evaporation for the same pattern. Because this method also facilitates substrate reuse, a significantly reduced cost of the final device is expected. We investigate the morphology, crystallography, and optical properties of InP and GaAs nanowires grown from electrodeposited gold seed particles and compare them with the properties of nanowires grown from seed particles defined by thermal evaporation of gold. We find that nanowire synthesis, as well as the material properties of the grown nanowires are comparable and quite independent of the gold deposition technique. On the basis of these results, electrodeposition is proposed as a key technology for large-scale fabrication of nanowire-based devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nl503203zDOI Listing

Publication Analysis

Top Keywords

nanowire synthesis
12
seed particles
12
electrodeposited gold
8
substrate reuse
8
gold consumption
8
thermal evaporation
8
nanowires grown
8
gold
7
iii-v nanowire
4
synthesis electrodeposited
4

Similar Publications

The processes of electrochemical deposition of Ni on vertically aligned GaAs nanowires (NWs) grown by molecular-beam epitaxy (MBE) using Au as a growth catalyst on Si(111) substrates were studied. Based on the results of electrochemical deposition, it was concluded that during the MBE synthesis of NWs the self-induced formation of conductive channels can occur inside NWs, thereby forming quasi core-shell nanowires. Depending on the length of the channel compare to the NW heights and the parameters of electrochemical deposition, the different hybrid metal-semiconductor nanostructures, such as Ni nanoparticles on GaAs NW side walls, Ni clusters on top ends of GaAs NWs, core-shell Ni/GaAs NWs, were obtained.

View Article and Find Full Text PDF

Bone defect healing is a multi-factorial process involving the inflammatory microenvironment, bone regeneration and the formation of blood vessels, and remains a great challenge in clinical practice. Combined use of three-dimensional (3D)-printed scaffolds and bioactive factors is an emerging strategy for the treatment of bone defects. Scaffolds can be printed using 3D cryogenic printing technology to create a microarchitecture similar to trabecular bone.

View Article and Find Full Text PDF

Pt-modified hollow tube-like polyaniline-based NH sensor.

J Hazard Mater

November 2024

College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China. Electronic address:

Polyaniline (PANI) has significant applications in room-temperature NH detection due to its unique and reversible doping-dedoping chemical state, stable electrical conductivity and easy and convenient synthesis process. However, pristine PANI still suffers from poor performance in terms of sensitivity, response speed and detection limit. To address issues of low sensitivity and high detection limit, a platinum (Pt)-modified hollow PANI (Pt-PANI) sensor was designed.

View Article and Find Full Text PDF

Facile Hydrothermal Synthesis and Resistive Switching Mechanism of the α-FeO Memristor.

Molecules

November 2024

Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China.

Among the transition metal oxides, hematite (α-FeO) has been widely used in the preparation of memristors because of its excellent physical and chemical properties. In this paper, α-FeO nanowire arrays with a preferred orientation along the [110] direction were prepared by a facile hydrothermal method and annealing treatment on the FTO substrate, and then α-FeO nanowire array-based Au/α-FeO/FTO memristors were obtained by plating the Au electrodes on the as-prepared α-FeO nanowire arrays. The as-prepared α-FeO nanowire array-based Au/α-FeO/FTO memristors have demonstrated stable nonvolatile bipolar resistive switching behaviors with a high resistive switching ratio of about two orders of magnitude, good resistance retention (up to 10 s), and ultralow set voltage (V = +2.

View Article and Find Full Text PDF

Natural seawater electrolysis is emerging as a desirable approach for hydrogen production, but it suffers from long-term instability due to severe chloride corrosion. In this study, Zr doped CoO is proposed for natural seawater oxidation, which requires an overpotential of only 570 mV to drive a current density of 100 mA cm, and a sustained natural seawater electrolysis at 10 mA cm for 500h exhibits only 0.78 % decay.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!