Most studies investigating human metabolomics measurements are limited to a single biofluid, most often blood or urine. An organism's biochemical pool, however, comprises complex transboundary relationships, which can only be understood by investigating metabolic interactions and physiological processes spanning multiple parts of the human body. Therefore, we here propose a data-driven network-based approach to generate an integrated picture of metabolomics associations over multiple fluids. We performed an analysis of 2251 metabolites measured in plasma, urine, and saliva, from 374 participants of the Qatar Metabolomics Study on Diabetes (QMDiab). Gaussian graphical models (GGMs) were used to estimate metabolite-metabolite interactions on different subsets of the data set. First, we compared similarities and differences of the metabolome and the association networks between the three fluids. Second, we investigated the cross-talk between the fluids by analyzing correlations occurring between them. Third, we propose a framework for the analysis of medically relevant phenotypes by integrating type 2 diabetes, sex, age, and body mass index into our networks. In conclusion, we present a generic, data-driven network-based approach for structuring and visualizing metabolite correlations within and between multiple body fluids, enabling unbiased interpretation of metabolomics multifluid data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/pr501130a | DOI Listing |
Int J Comput Assist Radiol Surg
January 2025
Medical Informatics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.
Purpose: Semantic segmentation and landmark detection are fundamental tasks of medical image processing, facilitating further analysis of anatomical objects. Although deep learning-based pixel-wise classification has set a new-state-of-the-art for segmentation, it falls short in landmark detection, a strength of shape-based approaches.
Methods: In this work, we propose a dense image-to-shape representation that enables the joint learning of landmarks and semantic segmentation by employing a fully convolutional architecture.
Brief Bioinform
November 2024
Department of Automation, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
Studying the changes in cellular transcriptional profiles induced by small molecules can significantly advance our understanding of cellular state alterations and response mechanisms under chemical perturbations, which plays a crucial role in drug discovery and screening processes. Considering that experimental measurements need substantial time and cost, we developed a deep learning-based method called Molecule-induced Transcriptional Change Predictor (MiTCP) to predict changes in transcriptional profiles (CTPs) of 978 landmark genes induced by molecules. MiTCP utilizes graph neural network-based approaches to simultaneously model molecular structure representation and gene co-expression relationships, and integrates them for CTP prediction.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Qingdao Institute for Theoretical and Computational Sciences, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, P.R. China.
Milestoning is an efficient method for calculating rare event kinetics by constructing a continuous-time kinetic network that connects the reactant and product states. Its accuracy depends on both the quality of the underlying force fields and the trajectory sampling. The sampling error can be effectively controlled through various methods.
View Article and Find Full Text PDFObjectives: The pairing of immunotherapy and radiotherapy in the treatment of locally advanced nonsmall cell lung cancer (NSCLC) has shown promise. By combining radiotherapy with immunotherapy, the synergistic effects of these modalities not only bolster antitumor efficacy but also exacerbate lung injury. Consequently, developing a model capable of accurately predicting radiotherapy- and immunotherapy-related pneumonitis in lung cancer patients is a pressing need.
View Article and Find Full Text PDFDyslexia
February 2025
Department of Machine Learning and Data Processing, Faculty of Informatics, Masaryk University, Brno, Czech Republic.
Current diagnostic methods for dyslexia primarily rely on traditional paper-and-pencil tasks. Advanced technological approaches, including eye-tracking and artificial intelligence (AI), offer enhanced diagnostic capabilities. In this paper, we bridge the gap between scientific and diagnostic concepts by proposing a novel dyslexia detection method, called INSIGHT, which combines a visualisation phase and a neural network-based classification phase.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!