Respiration influences various pacemakers and rhythms of the body during inspiration and expiration but the underlying mechanisms are relatively unknown. Understanding this phenomenon is important, as breathing disorders, breath holding, and hyperventilation can lead to significant medical conditions. We discuss the physiological modulation of heart rhythm, blood pressure, sympathetic nerve activity, EEG, and other changes observed during inspiration and expiration. We also correlate the intracellular mitochondrial respiratory metabolic processes with real-time breathing and correlate membrane potential changes with inspiration and expiration. We propose that widespread minor hyperpolarization occurs during inspiration and widespread minor depolarization occurs during expiration. This depolarization is likely a source of respiratory drive. Further knowledge of intracellular and extracellular ionic changes associated with respiration will enhance ourunderstanding of respiration and its role as a modulator of cellular membrane potential. This could expand treatment options for a wide range of health conditions, such as breathing disorders, stress-related disorders, and further our understanding of the Hering-Breuer reflex and respiratory sinus arrhythmia.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mehy.2014.11.010DOI Listing

Publication Analysis

Top Keywords

inspiration expiration
12
source respiratory
8
breathing disorders
8
membrane potential
8
widespread minor
8
expiration
5
widespread depolarization
4
depolarization expiration
4
expiration source
4
respiratory
4

Similar Publications

Anaerobic probiotics-in situ Se nanoradiosensitizers selectively anchor to tumor with immuno-regulations for robust cancer radio-immunotherapy.

Biomaterials

January 2025

Department of Pharmacy of Puning People's Hospital (Guangdong Postdoctoral Innovation Practice Base of Jinan University), Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangdong, 510632, China. Electronic address:

Developing translational nanoradiosensitizers with multiple activities in sensitizing tumor cells and re-shaping tumor immunosuppressive microenvironments are urgently desired for addressing the poor therapeutic efficacy of radiotherapy in clinic. Inspired by the anaerobic and immunoagonist properties of the probiotic (bifidobacterium longum, BL), herein, a biomimetic Selenium nanoradiosensitizer in situ-formed on the surface of the probiotic (BL@SeNPs) is developed in a facile method to potentiate radiotherapy. BL@SeNPs selectively target to hypoxia regions of tumors and then anchor on the surface of tumor cells to inhibit its proliferation.

View Article and Find Full Text PDF

Mechanical ventilation is the process through which breathing support is provided to patients who face inconvenience during respiration. During the pandemic, many people were suffering from lung disorders, which elevated the demand for mechanical ventilators. The handling of mechanical ventilators is to be done under the assistance of trained professionals and demands the selection of ideal parameters.

View Article and Find Full Text PDF

An Update on Deaths in the United Kingdom from 'Poppers' (Alkyl Nitrites), with a Particular Focus on 'Swallowing' Fatalities.

J Clin Med

January 2025

Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, College Lane Campus, Hatfield, Hertfordshire AL10 9AB, UK.

Alkyl nitrites are a class of inhalant, commonly known as 'poppers'. Although having medical uses, some other effects include a 'rush', 'high', 'euphoria', or feeling of excitement. This has led to their recreational use, in different scenarios, since the mid-1960s.

View Article and Find Full Text PDF

Tumor Microenvironment-Driven Structural Transformation of Vanadium-Based MXenzymes to Amplify Oxidative Stress for Multimodal Tumor Therapy.

Adv Sci (Weinh)

January 2025

National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China.

MXenzymes, a promising class of catalytic therapeutic material, offer great potential for tumor treatment, but they encounter significant obstacles due to suboptimal catalytic efficiency and kinetics in the tumor microenvironment (TME). Herein, this study draws inspiration from the electronic structure of transition metal vanadium, proposing the leverage of TME specific-features to induce structural transformations in sheet-like vanadium carbide MXenzymes (TVMz). These transformations trigger cascading catalytic reactions that amplify oxidative stress, thereby significantly enhancing multimodal tumor therapy.

View Article and Find Full Text PDF

To reduce the risk of syncope, trained breath-hold divers (BHDs) use a specialized breathing technique after surfacing called "hook breathing" (HB). It consists of a full inspiration followed by a Valsalva-like maneuver and with subsequent exhalation performed against resistance to generate continuous positive airway pressure during exhalation. This study analyzed the influence of HB on oxygen saturation recovery after a -40 m depth apnea dive in trained BHDs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!