C21-steroids inactivation and glucocorticoid synthesis in the developing lung.

J Steroid Biochem Mol Biol

Reproduction, Mother and Youth Health, Centre de recherche du CHU de Québec, Québec, QC, Canada; Department of Obstetrics/Gynecology & Reproduction, Faculty of Medicine, Laval University, Québec, QC, Canada; Centre de Recherche en Biologie de la Reproduction (CRBR), Faculty of Medicine, Laval University, Québec, QC, Canada. Electronic address:

Published: March 2015

Glucocorticoids (GCs) are important regulators of lung development. The genes normally involved in GC synthesis in adrenals are co-expressed with 20α-hydroxysteroid dehydrogenase (20α-HSD) in the developing lung. In this study, C21-steroid metabolism was investigated in fetal and postnatal mouse lungs. Incubation of [(3)H]-progesterone with lung explant cultures of different perinatal developmental time points revealed two different (antenatal vs. postnatal) complex metabolization patterns. Progesterone inactivation was predominant. 20αOH-derivatives were more abundant after birth and some metabolites were 5α-reduced. Using [(3)H]-progesterone as substrate, corticosterone synthesis was only observed in a fraction of lung explants from gestation day (GD) 15.5. Neither aldosterone synthase nor P450c17 activity was observed. With epithelial-enriched primary cell cultures, deoxycorticosterone synthesis from [(3)H]-progesterone was observed. With lung explants incubated with [(3)H]-corticosterone as substrate, [(3)H]-4-pregnen-21-ol-3,11,20-trione (11-dehydrocorticosterone), the product of 11β-HSD2, accumulated in higher proportion on GD 15.5 than at later developmental time points. The temporal correlation observed between levels of progesterone inactivation by 20α-HSD (higher after birth) and the sensitivity of lung development to GCs suggests a role for 20α-HSD in the modulation of GR occupancy through the control of 21-hydroxylase substrate and product levels. In conclusion, the developing lung is characterized by effective inactivation of c21-steroids by 20α-HSD. The formation of active GCs from the "adrenal"-like pathway was observed with some lung explants and primary epithelial cell cultures. Coexistence of this GC synthesis pathway with 20α-HSD activity strongly suggests local regulation of GC action and is compatible with intracrine/paracrine actions of GC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jsbmb.2014.11.025DOI Listing

Publication Analysis

Top Keywords

developing lung
12
lung explants
12
lung
9
lung development
8
developmental time
8
time points
8
progesterone inactivation
8
cell cultures
8
observed lung
8
synthesis
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!