Cross-linking of bound 125I-basic fibroblast growth factor (bFGF) to bovine epithelial lens cells identified two labelled species whose apparent molecular weights were identical with those of two phosphorylated proteins. The bFGF-stimulated phosphorylation of these proteins was shown to be rapid, suggesting an autophosphorylation process. To demonstrate that the phosphorylated proteins were indeed the bFGF-binding molecules, the two components were purified to homogeneity and their bFGF-binding activity was examined. We conclude that bFGF stimulates the phosphorylation of two receptors of 130 and 160 kDa in bovine epithelial lens cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0006-291x(89)80120-2DOI Listing

Publication Analysis

Top Keywords

bovine epithelial
12
epithelial lens
12
lens cells
12
fibroblast growth
8
growth factor
8
phosphorylated proteins
8
identification isolation
4
isolation bovine
4
cells basic
4
basic fibroblast
4

Similar Publications

Distinct effects of glucocorticoid on pseudorabies virus infection in neuron-like and epithelial cells.

J Virol

January 2025

Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.

Pseudorabies virus (PRV) is a porcine neurotropic alphaherpesvirus that infects peripheral tissues of its host, spreads into the nervous system, and establishes a life-long latency in neuronal cells. During productive infection, PRV replicates rapidly and causes pseudorabies or Aujeszky's disease. Reactivation from latent infection in the nervous system may lead to anterograde axonal transport of progeny virions, leading to recurrent infection of the epithelial layer and virus spread.

View Article and Find Full Text PDF

Cadmium accumulation in the body can damage a variety of organs and impair their development and functions. In the present study, we investigated the effect of cadmium on the stemness and proliferation of normal bovine mammary epithelial cells (BMECs). Normal bovine mammary epithelial cells treated with cadmium chloride were assessed for the expression of stemness-related proteins and cell proliferation.

View Article and Find Full Text PDF

Protective Effects of Chitosan Oligosaccharide Against Lipopolysaccharide-Induced Inflammatory Response and Oxidative Stress in Bovine Mammary Epithelial Cells.

Mar Drugs

January 2025

The Key Laboratory of Animal Genetic Resource and Breeding Innovation, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China.

Chitosan oligosaccharide (COS) is receiving increasing attention as a feed additive in animal production. COS has a variety of biological functions, including anti-inflammatory and antioxidant activities. Mastitis is a major disease in dairy cows that has a significant impact on animal welfare and production.

View Article and Find Full Text PDF

This brief report aimed to investigate the optical absorbance spectra of normal, dysplastic, and malignant epithelial cell lines under normal and nutritional stress conditions. HaCAT (keratinocyte), DOK (oral dysplastic), and oral squamous cell carcinoma (OSCC) cell lines (CA1, Luc4, SCC9) were evaluated regarding their optical absorbance after culture with 0-10% fetal bovine serum. Absorbance measurements indicated that HaCAT under serum starvation exhibited higher absorbance at blue (430 nm) and near-infrared (906 nm) wavelengths.

View Article and Find Full Text PDF

Chlorogenic acid (CGA), a polyphenolic bioactive molecule derived from medicinal plants, is known for its strong antioxidant and anti-inflammatory properties. Previous studies have demonstrated that dietary supplementation with Lonicera japonica extract, rich in CGA, effectively enhances the production performance of lactating dairy cows under heat stress (HS) conditions. However, the molecular mechanisms underlying CGA's protective effects remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!