Probing the local environment of target cells has been considered a challenging task due to the complexity of living cells. Here, we developed new single cell-based chip to investigate the intracellular and extracellular redox state of PC12 cells using spectroelectrochemical tool that combined surface-enhanced Raman scattering (SERS) and linear sweep voltammetry (LSV) techniques. PC12 cells immobilized on gold nanodots/ITO surface were subjected to LSV and their intracellular biochemical changes were successfully monitored by SERS simultaneously. Moreover, paired gold microelectrodes with micrometer-sized gap containing hexagonal array of gold nanodots were fabricated to detect electrochemical activity and changes in the redox environment of single PC12 cell based on SERS-LSV tool. This showed very effective detecting method. The used technology included the utilization of gold nanodots array inside micro-gap to enhance the Raman signals and the electrochemical activity of single cell. This could be used as an effective research tool to analyze cellular processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2014.11.023 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!