A ZraP-based lead sensing and removal system was constructed in E. coli. It was regulated by the ZraS/ZraR two-component system. The expression profile of the zraP gene towards extracellular lead was studied via real-time PCR. A dual-function bacterial system was also designed to express GFP and OmpC-lead binding peptide under the control of zraP for the simultaneous sensing and adsorption of environmental lead without additional manipulation. The constructed bacterial system can emit fluorescence and it adsorbed a maximum of 487 µmol lead/g cell DCW. From a study of artificial wastewater, the constructed bacteria adsorbed lead highly selectively (427 µmol lead/g cell DCW) among other metal ions. The newly-constructed dual function bacterial system can be applied for the development of an efficient process for the removal of lead from polluted wastes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10529-014-1732-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!