A ZraP-based lead sensing and removal system was constructed in E. coli. It was regulated by the ZraS/ZraR two-component system. The expression profile of the zraP gene towards extracellular lead was studied via real-time PCR. A dual-function bacterial system was also designed to express GFP and OmpC-lead binding peptide under the control of zraP for the simultaneous sensing and adsorption of environmental lead without additional manipulation. The constructed bacterial system can emit fluorescence and it adsorbed a maximum of 487 µmol lead/g cell DCW. From a study of artificial wastewater, the constructed bacteria adsorbed lead highly selectively (427 µmol lead/g cell DCW) among other metal ions. The newly-constructed dual function bacterial system can be applied for the development of an efficient process for the removal of lead from polluted wastes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10529-014-1732-xDOI Listing

Publication Analysis

Top Keywords

bacterial system
12
zrap gene
8
lead sensing
8
sensing removal
8
removal system
8
lead/g cell
8
cell dcw
8
lead
6
system
6
evaluation zrap
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!