Methylobacterium extorquens: methylotrophy and biotechnological applications.

Appl Microbiol Biotechnol

Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland.

Published: January 2015

Methylotrophy is the ability to use reduced one-carbon compounds, such as methanol, as a single source of carbon and energy. Methanol is, due to its availability and potential for production from renewable resources, a valuable feedstock for biotechnology. Nature offers a variety of methylotrophic microorganisms that differ in their metabolism and represent resources for engineering of value-added products from methanol. The most extensively studied methylotroph is the Alphaproteobacterium Methylobacterium extorquens. Over the past five decades, the metabolism of M. extorquens has been investigated physiologically, biochemically, and more recently, using complementary omics technologies such as transcriptomics, proteomics, metabolomics, and fluxomics. These approaches, together with a genome-scale metabolic model, facilitate system-wide studies and the development of rational strategies for the successful generation of desired products from methanol. This review summarizes the knowledge of methylotrophy in M. extorquens, as well as the available tools and biotechnological applications.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-014-6240-3DOI Listing

Publication Analysis

Top Keywords

methylobacterium extorquens
8
biotechnological applications
8
products methanol
8
extorquens methylotrophy
4
methylotrophy biotechnological
4
applications methylotrophy
4
methylotrophy ability
4
ability reduced
4
reduced one-carbon
4
one-carbon compounds
4

Similar Publications

The conversion of CO into methanol depicts one of the most promising emerging renewable routes for the chemical and biotech industry. Under this regard, native methylotrophs have a large potential for converting methanol into value-added products but require targeted engineering approaches to enhance their performances and to widen their product spectrum. Here we use a systems-based approach to analyze and engineer M.

View Article and Find Full Text PDF

Elucidating details of biology's selective uptake and trafficking of rare earth elements, particularly the lanthanides, has the potential to inspire sustainable biomolecular separations of these essential metals for myriad modern technologies. Here, we biochemically and structurally characterize () LanD, a periplasmic protein from a bacterial gene cluster for lanthanide uptake. This protein provides only four ligands at its surface-exposed lanthanide-binding site, allowing for metal-centered protein dimerization that favors the largest lanthanide, La.

View Article and Find Full Text PDF

Combined application of resveratrol and a ryegrass endophyte in PAH-contaminated soil remediation and its impact on soil microbial communities.

RSC Adv

October 2024

Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University Hangzhou 310012 China

Article Synopsis
  • Certain plant endophytes have shown potential in breaking down organic pollutants, specifically polycyclic aromatic hydrocarbons (PAHs), but their effectiveness after culture and in real-world soil remediation is still uncertain.
  • A study found that resveratrol enhances the PAH degradation ability of an endophyte called C1 while having little effect on native soil bacteria, suggesting a selective boosting effect.
  • The combination of resveratrol and the endophyte C1 in contaminated soil resulted in significantly improved PAH removal rates, indicating a promising new bioremediation method that utilizes the interaction between plant-produced metabolites and endophytic bacteria.
View Article and Find Full Text PDF

Structure-driven development of a biomimetic rare earth artificial metalloprotein.

Proc Natl Acad Sci U S A

August 2024

Center for Biophysics and Quantitative Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801.

The 2011 discovery of the first rare earth-dependent enzyme in methylotrophic AM1 prompted intensive research toward understanding the unique chemistry at play in these systems. This enzyme, an alcohol dehydrogenase (ADH), features a La ion closely associated with redox-active coenzyme pyrroloquinoline quinone (PQQ) and is structurally homologous to the Ca-dependent ADH from the same organism. AM1 also produces a periplasmic PQQ-binding protein, PqqT, which we have now structurally characterized to 1.

View Article and Find Full Text PDF

Many bacteria secrete metallophores, low-molecular-weight organic compounds that bind ions with high selectivity and affinity, in order to access essential metals from the environment. Previous work has elucidated the structures and biosynthetic machinery of metallophores specific for iron, zinc, nickel, molybdenum, and copper. No physiologically relevant lanthanide-binding metallophore has been discovered despite the knowledge that lanthanide metals (Ln) have been revealed to be essential cofactors for certain alcohol dehydrogenases across a diverse range of phyla.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!